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RESUMO

NASCIMENTO, José, FUNCAO, Eduardo. Estudo e otimizacio da localizacio de bicicletas
compartilhadas na Universidade de S3o Paulo. 2021. 74 f. Trabalho de Conclusdo de Curso —
PMR - Engenharia Mecatronica, Universidade de Sdo Paulo. S3o Paulo, 2021.

Estacdes de compartilhamento de bicicletas estao sendo cada vez mais adotadas em pequenas
e grandes cidades ao redor do mundo, melhorando a mobilidade urbana de forma sustentavel e
reduzindo a emiss3o de gases de efeito estufa e garantindo uma vida mais sauddvel aos seus
usudrios. Um dos grandes problemas associados ao seu uso estd na falta de estacGes perto
de regides com alta demanda e elevada distancia entre elas. Em um primeiro estagio foram
utilizados dois algoritmos metaheuristicos, Particle Swarm Optimization e Simulated Annealing
para obter os pontos ideais das estages e, em seguida, foram simuladas as intera¢des dos
usudrios com as novas estacoes, utilizando o software grafico Processing. Os dados utilizados
para guiar os algoritmos foram obtidos da base de Nova York.

Palavras-chave: Compartilhamento de Bicicletas. Otimizacdo por Enxame de Particulas.
Recozimento Simulado.



ABSTRACT

NASCIMENTO, José, FUNCAO, Eduardo. Shared Bicycles Location Study and Optimization
in the University of Sdo Paulo: Users approach. 2021. 74 f. Trabalho de Conclusdo de Curso —
PMR - Engenharia Mecatronica, Universidade de Sdo Paulo. S3o Paulo, 2021.

Bike-sharing stations are increasingly being adopted around the world, improving urban mobility
in a sustainable way, reducing greenhouse gas emissions, and ensuring a healthier life for their
users. One of the major problems preventing further use is the lack of stations close to regions
with high demand and the long distances between them. In a first stage, two metaheuristic
algorithms, Particle Swarm Optimization and Simulated Annealing were used to obtain the
ideal points of the stations, and then the interactions of users with the new stations were
simulated using a graphic software named Processing. The data used to guide the algorithms
were obtained from the New York City base.

Keywords: bike-sharing. Particle Swarm Optimization. Simulated Annealing. Facility Location
Problem.
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1 INTRODUCAO

A mobilidade urbana é de importancia impar para o entendimento do desenvolvimento
das cidades, principalmente quando se trata de grandes centros urbanos. Especificamente no
Brasil, a falta de planejamento urbano (com desenvolvimento voltado principalmente para o
transporte rodovidrio) contribuiu para que um problema crénico se revelasse no transporte do
pais. Transito problemdtico, engarrafamentos constantes, transporte publico sucateado, falta
de meios alternativos para locomoc¢ao e descaso com sistemas multimodais sdo alguns dos
fatores que abrem a discussao, clamando por perguntas e para a procura de solugdes.

Uma das formas de transporte que ganha popularidade desde a ultima década sdo as
bicicletas compartilhadas. No Brasil, foram introduzidas em dezembro de 2008 com o “Pedala
Rio”, como uma forma de teste do modal na regido sul carioca. Em S3o Paulo, foram vdrias as
tentativas de introduzir o modal na cidade, como por exemplo o caso das bicicletas individuais
da Yellow e outra da empresa Tembici em parceria com o banco Itai (TEMBICI, 2020).

A abordagem da Yellow se baseava em um sistema de bicicletas que poderiam ser
retiradas e estacionadas em qualquer lugar da cidade mediante o uso de uma trava para
desbloquea-las. Tal modelo apresenta alto custo de manutencdo uma vez que muitas sdo
jogadas ao chao ou mesmo roubadas. O modelo que serd abordado neste relatério é o da
empresa "Tembici” em que as bicicletas s6 podem ser retiradas e colocadas em estacdes
espalhadas pela cidade. As suas principais vantagens sao um menor custo de manutencao por
conta da menor taxa de avaria feita pelos usuarios e a facilidade de recolha das bicicletas para
manutenc3o ou rearranjo, uma vez que se sabe exatamente a sua localizac3o.

Apesar dos modelos de negdcio para as bicicletas compartilhadas nem sempre triunfa-
rem, é inquestionavel o poder do modal como alternativa de desafogamento do transito em
grandes centros urbanos, funcionando especialmente bem para distancias curtas em percursos
majoritariamente planos.

A partir disso, a questdao que surge e o problema o qual se pretende tratar aparecem
naturalmente: como otimizar a localizacao de estacdes de bicicletas compartilhadas, ou a
localizacao das oficinas onde serd feita a manutencao das bicicletas. Esse problema, em resumo,
esta atrelado diretamente ao fluxo de pessoas dentro de uma cidade. A ida e a volta do trabalho
e assim como os demais afazeres das pessoas devem gerar um fluxo relativamente repetitivo
e previsivel, devendo ser essencial para a escolha dos locais das estacoes de bicicletas, assim

como a sua quantidade necessaria.



2 OBJETIVO E MOTIVACAO

Estima-se que o mercado mundial de bicicletas compartilhadas estd crescendo 20% ao
ano de acordo com uma pesquisa realizada pela Roland Berger (BERGER, 2008). O principal
mercado é o Asiatico, sendo a China o principal expoente com mais de 2 milhdes de bicicletas
compartilhadas apenas em Pequim (BERGER, 2008) e em crescimento.

A expans3o do mercado corrobora com a visdo atual de ESG empresarial (Environ-
mental, Social and Governance) de redugdo das emissdes de carbono e melhora da qualidade
de vida alinhado com o crescimento de faixas reservadas e sinalizacdo para bicicletas em
grandes metrépoles. Com o crescimento do mercado teremos o desenvolvimento de servicos e
sistemas mais inteligentes de compartilhamento de bicicletas e também da sua reorganizagao e
manutencao.

A otimizagdo das estacoes de bicicletas compartilhadas visa garantir um conforto ao
usuario que necessita do meio de transporte principalmente nos horarios de maior demanda
e em localidades especificas. Além de com isso reduzir os custos de transporte, rearranjo e
manutencao da empresa num mercado em expansao. Desse modo, garantindo melhorias sociais
para a populacido.

O problema é relevante e pode ser abordado no curso de Engenharia Mecatronica
pelo desenvolvimento de analises e utilizacdo de algoritmos por programacao para estudar o
caso. Projetos de criagdo de softwares, utilizando-se algoritmos methaeuristicos para andlise de

grandes volumes de dados sdao muito relevantes na atualidade.



3 ESTADO DA ARTE

Vogel, Greiser e Mattfeld (2011) exploraram os padrdes de atividade de sistemas de
bicicletas compartilhadas. Por meio de Data Mining, este complexo sistema pode ser entendido
de uma forma melhor, revelando também um dos principais problemas no compartilhamento de
bicicletas: o desbalanceamento na distribuicao das bicicletas, gerado justamente por esse fluxo
desigual da atividade nas cidades durante o dia.

Outra forma de abordar o problema é mudando o foco para o reabastecimento das
estacOes de bicicletas. Papazek et al. (2013) propdem um sistema para otimizar as rotas que
os veiculos de reabastecimento devem seguir para que as estagbes com mais demanda nos
diferentes periodos do dia estejam abastecidas.

Seguindo a mesma linha de estudo, foi, também, proposto por Schuijbroek, Hampshire
e van Hoeve (2017) um modelo para determinar a necessidade de rebalanceamento de bicicletas
entre as estacOes e qual seria a melhor rota do veiculo responsavel pelo rebalanceamento.

A questdo de definir uma localizacao de estacdes de bicicletas compartilhadas sempre
esteve no cerne da problematica em vista da implementacdo de tais sistemas. Kloimiillner e
Raidl (2017) discutem esse problema na fase do planejamento. Com informag¢des reduzidas
propde-se um sistema que ird escolher onde serdao construidas tais estacoes e de qual tamanho
devem ser. Fatores como usudrios em potencial, demanda local e Budget da empresa sio
levados em consideracdo. A principal vantagem de se utilizar um sistema computacional para
essa decisdo é que, dessa forma, a escolha manual das primeiras estacdes a serem construidas
pode ser evitada, diminuindo-se os possiveis erros e perdas.

Caggiani et al. (2019) propdem um sistema para otimizacdo baseado na satisfacdo do
usudrio. Nesse modelo, pressupde-se que ja exista um sistema em funcionamento na cidade. A
partir dai, dados como desisténcia de usudrios, além de informacdes sobre o abastecimento das
estacdes (por exemplo, estacdes cheias ou vazias) podem ser usados para definir a alocacio de
recursos para esse sistema, procurando maximizar a satisfacao do usuario.

Mais recentemente, algumas pesquisas tém considerado outras areas influenciadas
por sistemas de bicicletas compartilhadas. Yang, Jiang e Zhang (2021) investigam como esses
sistemas podem ser responsdveis por aumentar a demanda em atracOes e pontos turisticos da
cidade.

Ter uma visdo que procura por solucdes ecoldgicas e sustentaveis tornou-se indispen-
sdvel na gestao de uma cidade como um todo. Nao diferente deve ser a forma como € tratada
a questdo da mobilidade urbana. Numa pesquisa de ABDELLAOUI ALAOUI e KOUMETIO
TEKOUABOU (2021), foi proposto um sistema que utiliza internet das coisas e Machine
Learning para facilitar a gestdo, além de potencializar a disponibilidade de bicicletas e aumentar
a lucratividade de sistemas de compartilhamento. O modelo também é capaz de prever o nimero

de bicicletas utilizadas durante algum periodo de tempo com base em diversos parametros
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dindmicos. Dados reais sobre o sistema de compartilhamento de bicicletas de Londres foram
utilizados para comprovar a eficacia do modelo.

Apds a instalacdo de um servico de bicicletas compartilhadas, s3o necessarios apri-
moramentos, visando a sobrevivéncia financeira da empresa. Dokuz (2021) propde um modo
de identificacao espaciotemporal de estacoes-chave de bicicleta em uma cidade. Para isso sdo
propostos dois algoritmos que devem identificar tais estagdes chave. Provando sua eficacia, os
algoritmos podem ser bons aliados para a pesquisa do comportamento da mobilidade urbana em
termos do uso de bicicletas, além de ser fonte de informacdes valiosas a respeito da satisfacdo
do usudrio.

Os efeitos observados na mobilidade urbana estio fortemente ligados com fenémenos
observdveis sociais e econdmicos. Em um artigo de Chibwe et al. (2021), pretendeu-se relacionar
a taxa de desemprego com a demanda de bicicletas compartilhadas. Usando dados do sistema
de Londres, como era previsto, observou-se forte relacdo entre as duas situacdes.

De forma mais pratica Cintrano, Chicano e Alba (2020) documentam a utilizagdo de
diferentes algoritmos metaheuristicos para a definicao de localizacao de estacGes de bicicletas
compartilhadas. Aplicando-se a um caso real, o artigo busca definir as melhores localizacoes
para as estacOes do sistema de bicicletas compartilhadas da cidade de Mélaga, na Espanha. Os
algoritmos metaheuristicos sdo uteis para solucionar o problema das p-medianas e se aplicam

bem no caso da otimizacao da localizacdo de estacGes de bicicletas compartilhadas.



4 BASE TEORICA

Revisando a pesquisa feita acerca do tema, verifica-se que o desafio de otimizar a
localizacdo de estacGes de bicicletas compartilhadas se enquadra bem como um problema das
p-medianas. Nesse tipo de problema, deve-se buscar por escolher localizaces 6timas de acordo
com pontos de demanda ja especificados.

4.1 PROBLEMA DAS P-MEDIANAS (P-MEDIAN PROBLEM)

Desenvolvido a partir das pesquisas de Hakimi (1964), o problema p-mediana tem
como alvo encontrar um conjunto 'p’ de facilidades que devem atender a outro conjunto 'n’' de
pontos de demanda. As facilidades devem ser escolhidas de tal forma que as distancias entre
elas e os pontos de demanda sejam minimizadas (SILVA; MESTRIA, 2019).

E possivel dividir o problema em dois tipos: capacitado e nao-capacitado. Neste ultimo,
cada localizagao candidata possui uma capacidade nao limitada. No primeiro, as localizaces
em potencial possuem capacidade finita (TRAGANTALERNGSAK; RGNNQVIST, 2000).

Os problemas p-mediana sao NP-hard. NP é a sigla em inglés para tempo polinomial
ndo deterministico (Non-Deterministic Polynomial time), definindo a classe de problemas que
podem ser resolvidos em tempo polinomial por uma maquina de Turing n3o-deterministica.
NP-hard, em complemento, define a classe de problemas que sdo pelo menos mais dificeis que
problemas NP.

Além disso, esses problemas s3o de natureza combinatdria. Existem varias formas para
sua solucdo: para problemas de pequena dimensao, podem ser utilizados métodos exatos, os
que buscam o ponto 6timo; para problemas de grandes dimensoes, no entanto, ndo é vidvel
que se promova uma busca por solucoes exatas devido ao tempo de processamento que tais
métodos iriam requerer (STEINER, 2003).

4.2 OUTROS ALGORITMOS ESTUDADOS

Para problemas de grande porte, devem-se buscar por solugdes aproximadas. Métodos
que fornecam esses tipos de solugcdo (que se aproximem da solugdo Stima) em um tempo
praticavel. Mais especificamente esses problemas de grande porte podem ser solucionados
pela heuristica relaxacdo Lagrangeana. No entanto, este método funciona bem somente para
problemas especificos, ndo demonstrando grande eficiéncia para casos genéricos (COSTA,
2005).

Outra tentativa para a solugcdo de tais problemas encontra-se na metaheuristica. As
principais técnicas da metaheuristica sdo: Algoritmos Genéticos, Simulated Annealing, Particle
Swarm Optimization Variable Neighborhood Search (Busca em vizinhanca variada), Chemical
Reaction Optimization(CRQO), Iterated Local Search, entre outros (SILVA; MESTRIA, 2019).
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4.3 SIMULATED ANNEALING

O primeiro algoritmo implementado é o Simulated Annealing (SA), ou Recozimento
Simulado, utilizado com o objetivo de se encontrar a localizagdo étima global das esta¢bes. O
algoritmo traz o seu nome de uma metafora do processo de recozimento de uma peca de metal
que no inicio se encontra a uma Temperatura elevada fazendo com que os atomos tenham
maior liberdade e com o tempo, conforme esfriam acabam por encontrar regidoes com menor
energia (TROSSET, 2001).

Nessa técnica, escolhe-se uma solugdo inicial aleatéria dentro do dominio. Em seguida,
dentro de um lago, o resultado é incrementado e comparado com novos valores obtidos da
funcao objetiva. Dessa forma, caso o valor seja menor do que o anterior e, portanto, melhor
posicionado no dominio, a nova solucdo é aceita. Quando um novo resultado ndo é menor do
que o 6timo local, ele ndo necessariamente serd descartado. No SA, pode-se aceitar o valor
quando um ndmero aleatério for inferior ao fator de e . Esse fator depende do delta entre as
solucdes que estdao sendo comparadas e da Temperatura do sistema, a qual diminui a cada
iteracao.

Dessa forma a probabilidade de se aceitarem solu¢bes piores é maior no inicio das
iteracdes, propiciando ao cédigo a possibilidade de rejeitar pontos de minimo local, atingindo-
se com o tempo pontos de minimo global. O loop do programa termina quando, apds um
determinado nimero de iteracdes, ndo forem encontradas novas solucdoes melhores do que a

corrente. Vide pseudocddigo abaixo.

Algoritimo "Simulated Annealing”
N <— numero-estacoes-inicias
X < posicoes-iniciais (N)
X < objetiva(X)
ENQUANTO num-aceitos > 0 FACA
num-aceitos < 0
num-testados <« 0
ENQUANTO num — aceitos < iter E num — testados < iter x 2 FACA
X"+ incrementa(X)
num-testados <— num-testados +1
SE objetiva(X') < objetiva(X) OU random(0,1) < ex(—Aobjetiva()/T)
ENTAO
X+ X
num-aceitos <— num-aceitos +1
RETORNA X
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4.4 PARTICLE SWARM OPTIMIZATION

O Particle Swarm Optimization (PSO) é um algoritmo metaheuristico que consiste na
obtencdo de um ponto correspondente a optimizacdo da funcdo objetiva por meio do uso de
um sistema de swarm (enxame) inteligente (HUDAIB; HWAITAT, 2017). Originalmente foi
desenvolvido para estudar graficamente o movimento aleatério de pdssaros, criando um enxame
de particulas que se relacionam entre si e com o ambiente (KENNEDY; EBERHART, 2001).

Inicialmente determina-se o nimero de particulas que vao estar presentes no enxame e
as suas respectivas posicoes e velocidades iniciais. Define-se como critério de parada um ndmero
maxima de iteracoes ou com um critério de erro minimo da solucao final. Para cada particula
presente no enxame, determina-se o erro local, assim como se avalia se essa particula, é a melhor
global, e atualiza o valor global. Apds isso, percorre-se o enxame novamente, atualizando-se as
velocidades e as posi¢des. Vide pseudocédigo abaixo baseado em (HUDAIB; HWAITAT, 2017).

A selecao da préxima posicao de cada particula leva em consideracdo a sua velocidade
que € alterada, considerando-se a inércia da particula para alterar a velocidade anterior, a
velocidade cognitiva correspondendo ao minimo local para aquela particula e uma terceira
velocidade chamada de velocidade social responsavel pelo encaminhamento da particula ao
ponto de minimo global obtido até o momento (KENNEDY; EBERHART, 2001).

Algoritimo "Particle Swarm Optimization”
N <— numero-estacoes-inicias
X < posicoes-iniciais (N)
ENQUANTO i < Maxiteracdoes FACA
PARA cada particula FACA
objetiva(X)
SE objetiva(X)<best.global ENTAQ
best.global <— objetiva(X)
PARA cada particula FACA
atualiza.velocidade
atualiza.posicao
RETORNA X

45 FUNCAO OBJETIVA

O objetivo do programa é minimizar a distancia euclidiana (di(X)) entre os pontos
de demanda e as esta¢des (j) de forma que se leve em consideracdo a demanda (p) de cada
regido. A localizagdo das possiveis estagdes é dada pelo vetor X =(X1,..., Xp) e cada estag¢do

Xj = (xj, yj). Levando isso em consideragdo estabeleceu-se a fungdo objetiva representada pela
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seguinte equagdo (Eq. 1) baseada pelo artigo de Drezner et al. (2015).

n

F(X) =) pxmincj<,{di(X)} (1)

=1
4.6 Processos Estocasticos

Processos estocasticos podem ser definidos como uma série de varidveis aleatérias que
sao modificadas de acordo com a passagem do tempo. A varidvel definida convencionalmente
por X (t) representa alguma caracteristica mensurdvel em um sistema em operagdo ao longo
do tempo. Por exemplo, pode representar o nimero de bicicletas em uma estacao de comparti-
lhamento de bicicletas a cada momento, que pode ser dimensionado de acordo com chegadas
e saidas de bicicletas, de forma aleatéria (NOGUEIRA, 2017).

Os valores que X(t) pode assumir sdo denominados estados e o conjunto de estados
possiveis sdo determinados por espaco de estados. A mudanca de estados é um processo
estocastico, portanto, acontece de forma aleatdria de acordo com as Probabilidades de Transicao,
que definem qual é a chance de mudanca de um estado para outro de acordo com o tempo.
Um processo estocastico pode ser classificado de diferentes maneiras:

e Quanto ao tempo: Caso o tempo dentro de um processo varie dentro dos niimeros reais,
ele é chamado de processo estocéstico de tempo continuo. Da mesma forma, se o tempo
for uma variavel contdvel, da-se o0 nome de processo estocastico em tempo discreto;

e Quanto ao espaco de estados: que, da mesma maneira, pode ser continuo ou discreto
(IBE, 2013).

4.7 Processos de Markov

Um processo Markoviano (ou Cadeia de Markov) representa um processo estocastico
no qual a mudanca para um estado futuro depende somente do estado presente. Em outros
termos, trata-se de um processo estocastico sem memoria.

Usualmente, um processo de Markov é definido com base em um diagrama de estados.
A Figura 1 abaixo demonstra um exemplo de uma cadeia de Markov representado um processo
com dois estados. As setas de transicdo indicam a possibilidade de mudan¢a de estado, sendo

que a soma das probabilidades de transicdo saindo de cada estdgio deve ter soma 1 (IBE,
2013).

Figura 1 — Diagrama exemplo de uma cadeia de Markov com dois estados.
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48 Filas M/M/1

Filas M/M/1 é a denominagdo dada para filas que possuem somente um ponto de
atendimento, onde as chegadas s3o descritas por um processo de Poisson que ocorrem com
uma taxa \; e atendimentos sdo descritos de acordo com uma distribuicao exponencial de taxa
L.

Essas filas sdo do tipo FIFO (first in, first out em inglés), que possuem a caracteristica
de que o primeiro cliente a chegar na fila serd o primeiro a ser servido. Em outras palavras, os
clientes sdo atendidos em ordem nas filas FIFO.

As filas M/M/1 podem ser modeladas como uma cadeia de Markov de acordo com o
seguinte diagrama de estados descrito na Figura 2 (NOGUEIRA, 2017).

A A A A A
w( QY Gy EoNcONES
T Bk

Figura 2 — Diagrama de Markov de uma fila M/M/1 (NORRIS, 2021)

Este sistema é, portanto, descrito por uma varidvel aleatéria X(t) que representa o
numero de clientes na fila ao longo do tempo. Caso A < pu, o sistema é considerado estdvel.
Isso significa que o servico dessa fila atende numa taxa maior do que a taxa com a qual chegam
os clientes.

No estado estaciondrio, sendo p = \/u a probabilidade de que uma fila M/M/1 possua
i clientes é descrita por:

P(i) = (1-p)p’ (2)

Portanto, é possivel observar que as probabilidades desse tipo de fila estdo distribuidas
de forma geométrica, com pardmetro 1 — p. Assim, tira-se que o nimero médio de clientes

dentro desse tipo de filas em estado estacionario é p/(1 — p), com variancia de p/(1 — p)°
(LIBERMAN, 2006).
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5 METODOLOGIA

O problema a ser considerado visa otimizar a localizac3do de estacdes de bicicletas
compartilhadas, tendo como base a demanda de usudrios em certa regido. Tais informacdes
precisam ser obtidas nas bases ptblicas. Comparando-se as diferentes bases de dados, deve-se
escolher uma base de dados atualizada, relevante e com qualidade boa de dados. A escolha
deve ser critica e, para tal, deve-se explorar as bases por meio de graficos e visualiza¢cdes.
Problemas iniciais podem ser identificados dessa forma. A partir disso, serdo utilizados diferentes
algoritmos para se resolver o problema das p-medianas descrito no capitulo 4. Os resultados,

entdo, precisam ser revistos e os algoritmos, comparados entre si.

5.1 OBTENCAO DE DADOS NYC

As bases de dados utilizadas para treinar o modelo foram retiradas do portal de
bicicletas da empresa Citibike de Nova York (NYC, 2013) e do NYC Open Data (OPEN-DATA,
2020). Do primeiro portal, foram retirados os dados referentes as esta¢des de inicio e fim do
trajeto, como localizagdo das estagdes por nome, latitude e longitude, duracao das viagens
entre duas estacgoes, identificacdo da bicicleta que realizou o trajeto, data e hora da viagem,
idade do usuario e género. Do segundo, é possivel obter dados referentes a populacao em cada

bairro a fim de calcular a demanda por regiao.

5.1.1 COLETA E TRATAMENTO DE DADOS DA CIDADE DE NOVA IORQUE

Em uma analise inicial da base, foram feitos os seguintes tratamentos de dados da
cidade de Nova York.

Os dados foram inicialmente filtrados retirando os outliers. Para o caso em estudo o
campo referente a duragdo da viagem (tripduration) apresentava alguns valores muito distantes
da média padrao e por isso foram excluidos, como pode ser observado na Figura 3 em que se

compara a duragao da viagem pela idade do usuario.
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Figura 3 — Dados de duracao de viagem na cidade de Nova York por idade.

A idade do usudrio acaba por n3o ser tdo representativa na andlise, uma vez que
existem muitos usuarios nao cadastrados utilizando o servigo, deixando os dados incompletos.
Dessa forma, tal dado apenas sera utilizado comparativamente.

Os dados foram analisados para verificar a completude da base (Figura 4). Pode-se
identificar que os campos mais incompletos da base sdo do ano de nascimento do usuario e os
campos relacionados com a estac3o final, a sua localizacao e o seu nome. Tal problema se deve
principalmente a viagens nao terminadas em que aconteceram problemas de funcionamento

durante o percurso, o que acaba por afetar o campo tripduration.

Figura 4 — Completude dos dados

Os campos numéricos da base foram normalizados em um segundo momento ficando
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entre um intervalo de 0 a 1. Dessa forma é possivel realizar uma andlise de correlacdo entre os

campos, observada na imagem 5 com um grafico de heatmap (mapa de calor).
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Figura 5 — Heatmap - Correlacao dos dados

Os dados sobre a latitude e longitude das esta¢es iniciais e finais, mostram que a
maioria das viagens sdo realizadas em trajetos curtos.

Utilizando-se os pontos de latitude e longitude das esta¢des iniciais e finais é possivel
desenhar em um grafico real da cidade de Nova York as localiza¢bes das estacoes utilizadas
durante o periodo estudado (Figura 6). No eixo x encontra-se a Latitude e o eixo y a Longitude.
E facil perceber que regides perto das linhas de metrd possuem um maior ndmero de estacdes,

assim como em avenidas principais.
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Plotting Spatial Data on Riyadh Map
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Figura 6 — EstacOes de bicicletas compartilhadas na cidade de Nova York.

Uma andlise inicial também nos trouxe os principais horarios de utilizagdo das bicicletas
Figura 7. Observa-se que os principais horarios de pico ocorrem no final do dia entre as 17:00

e 19:00 horas. E o inicio das atividades se inicia entre as 7:00 e 8:00 horas da manha.
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Numero de viagens por hora
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Figura 7 — Histograma dos horarios de utilizacdo das bicicletas.

51.2 FREQUENCIAS DE UTILIZACAO

Apds o tratamento dos dados foi possivel realizar a andlise de frequéncias de saida e
chegada das bicicletas em cada estacdo, assim como a velocidade média das viagens.

Para obtencao das frequéncias, foram utilizados dados de 30 dias da cidade de Nova
York, observando-se, em um intervalo de uma hora, a frequéncia esperada de chegada e saida
de bicicletas em cada estacdo. A fim de melhor observar a movimentacao de bicicletas ao longo
do dia alguns hubs foram retirados, restando apenas os que estivessem a pelo menos 1 km de
distancia entre-si, sobrando apenas 28 esta¢Ges. Elas estao marcadas marcadas com pontos

azuis e podem ser observadas na Figura 8.
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Figura 8 — Sintese das estagdes (em azul).

Com a finalidade de se obter a velocidade média de cada viagem, considerou-se que a
movimentacdo ocorreu em linha reta, e a distancia foi calculada com base na diferencas de
latitude e longitude das estagdes de inicio e fim (Eq. 3 e 4 ). Em que lat, e lat; correspondem
as latitudes dos dois pontos e lonsy e lon; as respectivas longitudes, R representa o raio da
terra em km.

) % Sir12((lonQ 1—8(l)on1)7r) (3)

2 (laty — laty)m n latym latym

a = sin 150 ) + cos( 180 ) x cos( 180

Distancia(m) = 2R x 1000 arctan(y/a,v/1 — «); R = 6378.137(km) (4)



Capitulo 5. METODOLOGIA 16

Os resultados das distancias médias percorridas, duracdo e velocidade média em cada
viagem, podem ser observados nas Figuras 9, 10 e 11. Dos gréficos podemos observar que
distancias de até 3 km (80% da distribuicdo) e, consequentemente, tempos de viagem de até
30 minutos (80%) sdo preferiveis entre os usudrios. Da mesma forma, conforme a Tabela 1,
vemos que, embora o desvio padrdo do tempo de viagens seja elevado, a média da velocidade
se manteve em 2.47 m/s com um desvio padrdo de 1.74 m/s. Esses valores foram utilizados em
uma distribuicdo normal para fazer previsoes de viagens na cidade de Nova lorque que serdo

apresentadas na secdo 6.1.
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Figura 9 — Histograma das distancias médias das viagens na ilha de Manhattan.

Histograma Duragdo Manhattan
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Figura 10 — Histograma das dura¢des das viagens na ilha de Manhattan.
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Histograma Velocidades Manhattan
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Figura 11 — Histograma das velocidades médias das viagens na ilha de Manhattan.

Tabela 1: Médias e Desvio Padrao para as grandezas observadas.

Média Desvio Padrao

Distancia (m)  2216.2315  1556.9304
Duragdo (s) 1395.3479  9424.6224
Velocidade (m/s)  2.4666 1.7354

5.1.3 MODELAGEM DAS ESTACOES COMO FILAS M/M/1

As estagles de bicicleta podem ser modeladas como filas M/M/1. de acordo com
o modelo descrito no capitulo 4.8, as frequéncias de chegada e de saida de bicicletas das
estacGes podem ser representadas pelas taxas de chegada de clientes e de servico nas filas: A e
4, respectivamente.

Caso a frequéncia de chegada seja maior do que a frequéncia de saida, a fila é
considerada instavel, e, para valores de tempo muito grandes, ela crescera indefinidamente. Em
contrapartida, para filas estaveis (onde a frequéncia de saida é maior do que a frequéncia de
chegada), pode ser calculado o valor médio de clientes dentro delas, no estado estaciondrio.

O grafico 12 pontua qual é a quantidade de estacdes estdveis e instaveis. Observa-se

que 45,95% das estacbes s3o estaveis.
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Estabilidade das Estacdes
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Figura 12 — Estabilidade das estacoes.

5.1.4 COLETA DE DADOS DA UNIVERSIDADE DE SAO PAULO

A fim de estabelecer as estacGes de bicicletas e simular a movimentacdo dos usudrios
dentro do campus da cidade de S3o Paulo utilizou-se o Anudrio da USP do ano de 2020 (USP,
2020) para se obter os principais pontos de demanda da universidade, conforme observado na
Tabela 2.

Além dos dados da universidade também foram retiradas as posi¢cGes de latitude e

longitude de cada unidade para estabelecimento dos pontos de demanda dentro do campus.
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Tabela 2: Comunidade USP segmentada por Unidade no ano de 2020.(USP, 2020)

Cidade Universita- | Recursos Graduagao | Pés- Total de
ria "Armando de | Humanos Graduagao | Pessoas
Salles Oliveira”

CEPEUSP 121 0 0 121
ECA 359 2256 1213 3828
EDUSP 52 0 0 52
EEFE 132 501 167 800
EP 802 5246 2584 8632
FAU 243 1336 880 2459
FCF 217 926 406 1549
FE 244 946 720 1910
FEA 239 3013 817 4069
FFLCH 705 9131 3661 13497
FMVZ 351 477 636 1464
FO 301 760 395 1456
HU 1331 0 0 1331
IAG 181 302 281 764
B 284 763 515 1562
ICB 419 189 650 1258
IEA 26 0 0 26
IEB 54 0 118 172
IEE 146 0 310 456
IF 373 1294 312 1979
IGc 160 439 285 884
IME 278 1633 928 2839
(6] 163 220 162 545
IP 198 413 971 1582
IPEN 0 0 805 805
1Q 300 758 488 1546
IRI 45 308 148 501
MAC 88 0 0 88
MAE 65 0 131 196
NAIPE 0 0 0 0
PUSP-C 159 0 0 159
PUSP-CL 7 0 0 7
RUSP 1170 0 0 1170
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5.2 ALGORITMOS UTILIZADOS

Foram utilizados para andlise os algoritmos Particle Swarm Optimization (KENNEDY,
1995) e Simulated Annealing (KIRKPATRICK; JR.; VECCHI, 1983) determinando a eficiéncia
de cada algoritmo.

Com isso pretendeu-se obter novas localizacoes de estacoes de bicicletas compartilhadas

nas regioes estudadas e analisar a eficicia delas.

5.3 VALIDACAO DO ALGORITMO

A fim de validar o algoritmo, retirou-se dados ptblicos da cidade de Nova York, assim
como os utilizados anteriormente sé que dessa vez relacionados com a populacao da llha de
Manhattan. O estudo dividiu inicialmente a ilha em 29 Neighborhood Tabulation Areas (NTA,
2010) e a respectiva populacdo de cada drea. Com isso, foi possivel modelar 29 pontos de
demanda com as localizagdes determinadas por latitude e longitude e também um fator de
peso para cada ponto com base na quantidade de residentes por regido. Os pontos selecionados
da cidade podem ser observados na Figura 13. Uma segunda abordagem utilizando os dados
do Census de 2020 (CENSUS, 2020) dividindo a ilha em 283 segmentos pode ser observada na
Figura 14. Ambos segmentos foram utilizados no teste do algoritmo e na obtenc¢do das novas
posicdes de estacdes.
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Pontos de Demanda Ilha de Manhattan

Ve

Areas populacionais da cidade de Nova York (Census 202).

Figura 14
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5.4 PROCESSING

Processing é um software open source criado em 2001, que utiliza um ambiente
de desenvolvimento integrado (IDE) direcionado a criacdo de artes visuais em duas ou trés
dimensdes. Uma de suas grandes vantagens € a utilizacdo de linguagens de programacao ja
conhecidas e largamente difundidas, tais como JavaScript e Python. A utilizacdao do programa
consiste em duas fungdes principais, uma chamada setup(), em que se inicializam as variaveis,
assim como o tamanho da janela gréfica e o framerate da animagdo. Na outra fun¢do draw(),
colocam-se os cédigos responsdveis por realizar os desenhos e cores da animagdo a cada
framerate. Nas simulagoes utilizou-se o Processing 3.5.4 no ambiente de programacao em
Python 2.7 (FRY; REAS, 2001).
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Serdo tratados nesse capitulo os resultados referentes as localizacdes das estacles

obtidas pelos algoritmos Simulated Annealing e Particle Swarm Optimization tanto na ilha de

Manhattan quanto na cidade universitdria "Armando de Salles Oliveira”. As entradas dos dois

algoritmos s3o os pontos de demanda respectivos estabelecidos no Capitulo 5. Alinhado com a

criacao das estacoes também foram realizadas simulacGes do deslocamento de usudrios em

cada regido.

6.1 SIMULATED ANNEALING E PARTICLE SWARM OPTIMIZATION PARA MANHATTAN

Tabela 3: Compara¢do dos métodos utilizados (SA e PSO).

H SA PSO H
H Entradas H
N© de estacdes 75 75
N© iteracdo Mdxima - 10000
N° Aceites Mdximo 3000 -
N° Avaliados Maximo 6000 -
Fator de Cristalizagado maximo 40 -
Temperatura Inicial 0.1 -
N© de particulas - 1000
W (Constante de inércia) - 0.1
cl (Constante cognitiva) - 25
c2 (Constante social) - 3

Critério de parada

N© Aceites = 0

N° iteracio Mdxima
ou
Atual /Melhor < 0.99

H Comparacgdes H
Tempo de processamento (s) 180205.97 9457,84
N© de iteracoes 804 109
Solugdo fungdo objetiva 0.0367898 0.0505179
A Residuo 0.0137281

Utilizando-se os pontos de demanda da se¢do 5.3, mostrados na Figura 13 e os inputs

dos programas apresentados na Tabela 3 conseguimos utilizar os cédigos SA e PSO para o caso

da ilha de Manhattan. Considerando-se que a area total da ilha de Manhattan corresponde

3 59.1 km? e que, de acordo com o observado na secdo 5.1.2, a moda da distancia esta

aproximadamente em 1km podemos calcular o nimero de estacdes necessdrias supondo uma
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area circular de 1 km de didmetro de atuacdo de cada estacdo. Dessa forma, obtemos que
seriam necessarias, aproximadamente, 75 estacGes. A fim de confirmar essa hipdtese inicial
foram feitas diversas iteragdes com quantidades diferentes de estacbes, de 1 a 75, onde foram
calculadas as distancias maximas a serem percorrida por uma pessoa (Figura 15). Pode-se
observar que posicionando estacoes de forma inteligente a distancia cai rapidamente. Com 75

estacOes obteve-se uma distancia maxima de 1006.49 metros.
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4000 A
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2000 4
1000 4

0

0 4 8 1216 20 24 28 32 3640 44 48 52 560 o &4 65 72 7o 80
Figura 15 — Distancia maxima percorrida por um usudrio por quantidade de estacoes.
A Figura 16 a seguir representa as posicoes das estacdes no SA e no PSO. Em vermelho

estdo os pontos criados pelo PSO e em azul as esta¢cbes criadas pelo SA. Como era de se

esperar as dreas mais povoadas apresentaram uma concentracao maior de estacdes.
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E5tague5 obtidas pelus algoritmos
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Figura 16 — Estagdes obtidas pelos métodos SA (em azul) e PSO (em vermelho).

Além das posicdes finais, é interessante estudar a procura dos melhores pontos realizada
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pelo algoritmo. Conforme a Figura 17, pode-se ver como que as coordenadas de uma estacao
se alteram ao longo das iteragdes. No inicio do recozimento, enquanto a temperatura ainda
esta elevada, as estaces costumam explorar todo dominio das abscissas e ordenadas de forma
a minimizar o resultado da func3o objetiva e por conta do fator de aleatoriedade contido no
algoritmo do SA em que para temperaturas elevadas existe uma chance maior de aceitar um
resultado superior ao anterior (Apéndice B). A medida que a temperatura diminui, os pontos
da estacdo deixam de explorar e passam a refinar as respectivas posicdes, até encontrarem por

fim o minimo global.

Evolugdo das variaveis ao longo da temperatura
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Figura 17 — Posicdo nas abscissas e ordenadas de uma estacdo a cada temperatura (escala
logaritmica).

Um resultado semelhante acontece para os valores da funcao objetiva apresentados
nas Figuras 18 e 19. Enquanto a temperatura esta elevada é normal que solugcoes nao étimas
sejam aceitas, ocasionando os pontos de maximo da figura. Conforme a temperatura diminui,

a fungdo converge para o ponto de minimo.
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Figura 18 — Valores da fungdo objetiva pela temperatura

(log) .

0.0550 4

00525 4

0.0500 4

00475 4

0.0450 4

00425 +

00400 1

0.0375

T T T T T
10! 102 10°3 1m0 10"
temperatura

T T
10 1w

Figura 19 — Maximo, minimo e média da func3o objetiva

pela temperatura

O fator de cristalizagdo também pode ser observado ao longo das itera¢oes nas Figuras

20 e 21. Conforme o nimero de rejeitados aumenta, o fator de cristalizagdo em cada eixo tende

a aumentar, garantindo um refino maior da solugdo final.
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Figura 20 — Fator de cristalizacdo para o eixo x da esta-
cao.
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Figura 21 — Fator de cristalizacdao para o eixo y da esta-
¢ao.

O critério de parada para o SA ocorre quando o niimero de opg¢des aceitas chega a zero
dentro de um espaco de op¢les avaliadas, portanto, espera-se que o algoritmo tenha atingido
o minimo global nesse momento. As Figuras 22 e 23 retratam que, no inicio, praticamente
todas solu¢cdes sdo aceitas e conforme a temperatura diminui algumas solu¢Ges sdo rejeitadas,
aumentando a quantidade de solu¢des avaliadas.
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Figura 22 — Quantidade de solucbes avaliadas ao longo
das iteracoes.
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Figura 23 — Quantidade de solugdes aceitas ao longo das
iteracoes.

No caso do PSO, a tnica forma de se aceitar um novo resultado é quando o resultado
testado possui um valor inferior ao global. Por conta disso o grafico da fungdo objetiva é
decrescente (Figura 24) e tende a convergir de forma mais rapida do que o SA.

Uma consequéncia desse algoritmo € a tendéncia de serem aceitos minimos locais,
ao invés de minimos globais. No problema em questao, podemos observar que os valores da
funcao objetiva acabam por ser ligeiramente diferentes e a posicao das estagGes estdo mais

distantes umas das outras em alguns casos.
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Figura 24 — Valores da fun¢do objetiva para cada iteragao.

Essa caracteristica pouco exploratéria do PSO se reflete nas posicbes das possiveis
estacdes ao longo das iteracoes do programa. Como podemos observar na Figura 25, as
coordenadas dessa estacdo em cada iteracdo alteraram pouco quando comparadas com as do

método SA (Figura 17) e também convergiram a um ponto de maneira muito mais rapida.

Evolucdo das variaveis ao longo das iteragdes

74.00 - - X
73.95 |

0 20 40 B0 80 100
40 85 Y
40 80
40.75 -

0 20 40 &0 a0 100

Figura 25 — Posicao nas abscissas e ordenadas de uma estacao ao longo das iteragdes do
programa PSO.

6.2 NUMERO DE BICICLETAS POR ESTACAO

Por meio dos dados de frequéncia de utilizacdao da ilha de Manhattan foi possivel fazer
simulacoes a fim de obter a quantidade inicial ideal de bicicletas em cada estacdo, assim como

a quantidade total de slots para um periodo de utilizacao de 24 horas.
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Por meio de um processo iterativo, estacoes onde haviam lotacdes ou falta de bicicletas
tiveram seu ndmero inicial incrementado ou reduzido em lotes de 5 bicicletas. Esse processo foi
entdo repetido até que as estacOes pudessem suportar um dia em operacdo sem que houvesse
problemas de falta ou sobrecarga. Com isso, numa situacdo pratica, as estacbes somente
precisariam ser reabastecidas ou remanejadas uma vez por dia, por volta das 05:00 da manha o
qual é um hordrio de pouquissimo uso (Figura 7). Os resultados para cada estagdo podem ser

observados nas tabelas abaixo para Manhattan (Tabela 4) e para USP (Tabela 5).
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Tabela 4: Disposicao das bicicletas por estacio em Manhattan.

N© Estacdo | Qtd. Minima | Qtd. Total H N© Estacdo | Qtd. Minima | Qtd. Total

1 15 25 39 20 30
2 20 30 40 25 35
3 20 30 41 20 30
4 20 30 42 20 30
5 25 35 43 25 35
6 20 30 44 25 35
7 20 30 45 25 35
8 15 25 46 15 25
9 20 30 47 25 35
10 25 35 48 25 35
11 20 30 49 15 25
12 25 35 50 25 35
13 20 30 51 15 25
14 25 35 52 25 35
15 25 35 53 25 35
16 25 35 54 25 35
17 15 25 55 20 30
18 25 35 56 30 55
19 30 40 57 15 25
20 25 35 58 10 20
21 25 35 59 15 25
22 15 25 60 15 25
23 20 30 61 20 30
24 30 40 62 25 35
25 25 35 63 15 25
26 25 35 64 30 50
27 20 30 65 20 30
28 20 30 66 20 30
29 20 30 67 15 25
30 25 35 68 20 30
31 20 30 69 25 35
32 20 30 70 25 35
33 10 20 71 20 30
34 15 25 72 25 35
35 25 35 73 30 40
36 20 30 74 20 30
37 25 35 75 20 30
38 20 30
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Tabela 5: Disposicdo das bicicletas por estacdo na USP.

N© Estacdo | Qtd. Minima | Qtd. Total

1 25 35
2 25 35
3 30 40
4 35 45
5 20 30
6 10 20
7 25 35
8 20 30
9 15 25
10 30 40
11 20 30
12 10 20
13 20 30
14 10 20
15 30 40
16 30 40
17 35 45
18 15 25

6.3 SIMULACAO PROCESSING PARA MANHATTAN

Possuindo as posicOes das estacdes obtidas com os métodos anteriores, as frequéncias
de uso nas estagdes e a distribuicdo normal de velocidade das viagens, é possivel simular as
viagens dentro da ilha de Manhattan, como pode ser observado na Figura 26 abaixo.

Utilizaram-se as estacbes obtidas pelo SA para o caso. Inicialmente foram feitas
simulagdes com quantidades infinitas de bicicletas por estacdo e capacidade infinita. Ao longo
das simulagdes, foi possivel refinar o niimero de bicicletas e a capacidade para cada estacao.

Cada circulo vermelho, preenchido estdtico no mapa, representa uma estacdo, e o
nimero logo acima, a quantidade de bicicletas na estacdo a cada momento. Os circulos menores
representam bicicletas em viagem.

Na Figura 26, esta representada uma simulagcdo de uma hora, em que cada estacao
tem uma probabilidade de enviar uma bicicleta a cada minuto de acordo com a frequéncia
obtida. Existem, portanto, momentos em que nenhuma bicicleta parte da estacdo, sendo cada
simulacao tnica. Como podem sair bicicletas até o ultimo minuto, a simula¢ao pode ultrapassar
o tempo de uma hora. Também foram feitas simulacdes de 10 horas, sabendo que existissem
bicicletas em todas estacdoes a todo momento. Para visualizar clique aqui, ou acesse pelo
seguinte link: <https://youtu.be/dMB6ZW36Esc>.


https://youtu.be/dMB6ZW36Esc
https://youtu.be/dMB6ZW36Esc
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Figura 26 — Inicio da Simulagdo de uma hora utilizando o Processing.
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Figura 27 — Fim da Simula¢ao de uma hora utilizando o Processing.

6.4 SIMULATED ANNEALING E PARTICLE SWARM OPTIMIZATION PARA USP

No caso da cidade universitaria, foram feitas as simulaces de acordo com os pontos
de demanda da Tabela 2, para pontos com nimero relevantes de usuarios. Foram, igualmente,
adicionados pontos de demanda (Figura 28) na entrada da CPTM, que se encontra perto do
Portao 1, e no bandejao central devido a demanda em horarios especificos de entrada, e de

saida e de refeicOes, respectivamente.
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Figura 28 — Pontos de demanda estabelecidos para o campus da USP em azul.

O projeto da USP ¢ diferente do de Nova York, pois deseja-se obter um nimero de
estacoes suficientes para a alta demanda da USP concentrada principalmente nos horarios de
pico, e em regides especificas. Foram utilizadas 18 estacdes para as simulagdes dos algoritmos,
o qual é o mesmo nlimero de estacOes jd presentes no campus.

Observando o grafico que adicionando 18 estacdes obtém-se uma distancia de 673
metros (Figura 29). Isso quer dizer que no maximo uma pessoa terd que andar 673 metros para
chegar em uma estacdo. Portanto optou-se por manter 18 estacoes garantindo a otimizacao de

quantidade de estacdes pela regido, evitando um actimulo de esta¢bes de forma desnecessaria.
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Figura 29 — Distancia maxima percorrida por quantidade de estacoes.
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Tabela 6: Comparagdo dos métodos utilizados para USP (SA e PSO).

[ SA PSO |
H Entradas H
N© de estacdes 18 18
N© iteracio Maxima - 1000
N° Aceites Mdximo 720 -
N° Avaliados Maximo 1440 -
Fator de Cristalizagdo maximo 40 -
Temperatura Inicial 10 -
N© de particulas - 3000
W (Constante de inércia) - 0.1
cl (Constante cognitiva) - 25
c2 (Constante social) - 3
Critério de parada N° Aceites = 0 N© iteracdo Maxima
ou
Atual /Melhor < 0.99
H Comparagdes H
Tempo de processamento (s) 1351.63 304.25
N© de iteracoes 931 90
Solucdo fungdo objetiva 0.00089187 0.00181476
A Residuo 0.00092289

Podemos observar pela Tabela 6 e pela Figura 30 que os resultados, utilizando-se o
método do SA, foram mais precisos do que quando empregando o método do PSO, mesmo
que esse seja mais rapido e menos computacionalmente custoso. Os graficos de exploracdo e
refino mostrados para Manhattan sdo muito semelhantes aos obtidos para USP, uma vez que
retratam o funcionamento dos algoritmos e por isso ndo foram adicionados novamente nesta

secao.
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Figura 30 — EstagGes definidas pelo SA (azul) e PSO (vermelho).

6.5 SIMULACAO PROCESSING PARA USP

A simulac3o foi feita com base em um dia util da universidade com inicio as 6 horas
da manha e término as 20 horas, considerando-se que nesse instante quase todos cursos ja
encerraram as suas atividades e a demanda pelas bicicletas apds esse horario é bem escassa.
Para ver o video clique aqui, ou acesse pelo seguinte link: <https://youtu.be/40JPrSjMzlo>.

As frequéncias de utilizacao em cada estacdo foram retiradas da ilha de Manhattan,
uma vez que foi feito uma aproximag¢do da demanda considerando a quantidade de pessoas nos
pontos de demanda comparativamente com os das bases de estudo.

Utilizando a fun¢&o objetiva especificada anteriormente (Eq. 1), com as esta¢des da
Tembici obtivemos um resultado de 0.00467201, um valor aproximadamente cinco vezes maior
do que pelo SA. Comparando-se as localizagdes das estacdes (Figura 31) podemos ver que nas
regidoes com maior quantidade de alunos, como a Avenida Luciano Gualberto, existem mais
estacoes. Nas regides situadas nas extremidades do campus, como na Avenida Professor Lineu
Prestes, o niimero de esta¢des diminui consoante a reducao de cursos universitdrios situados

préximos a esse local.


https://youtu.be/4OJPrSjMzlo
https://youtu.be/4OJPrSjMzlo

Capitulo 6. ANALISE E DISCUSSAO DOS RESULTADOS 40

-23.552

-23554 "

-23.356

-23558

Biomedicas

-23.560 . - 5
e 5o ™. e |
¥ Pkstituto Lergs -
; de Fisica ﬂ"‘iq d”ch {
s B Yy, e 3
-23562 -3 o Y ¥ ® [ |
b = O )~ L
|7 ’,6 L] . - [}
. S %y ) =
-23.564 Z o - -
e =4 = S L ] = |
4+ % g 5 ® T S S
=2 ] = s -
% £ e ol
-23.566 12 2 p- 'I.&E';"D 1
’O - ?‘D =
s, AP 28
Ps b"'; Instituto -_P\qe':\‘ A ';
5t de-Cicgei - =
. € deCiegcia :
—23568 1" N CI 0 Shr
¥

—46.740 —46 735 —46.730 —46.725 —46.720 —46.715

Figura 31 — Estag¢des definidas pelo SA (azul) e estagdes da Tembici (vermelho).

Realizando uma comparacdo com os niimeros de bicicletas em cada estacdo ao final
do periodo de utilizacdo, com as mesmas frequéncias utilizadas para as estacdes mais préximas
obtidas no SA anteriormente e mantendo o limite maximo de slots presentes nas estacdes da
Tembici obtivemos o resultado mostrado na Figura 32. Pode-se perceber que as estacdes de
maiores demanda, como as entradas da universidade apresentam valores negativos ou nulos,

mostrando que para essa simulacdo faltaram bicicletas livres nas respectivas estacdes.
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Figura 32 — Resultado final da simulagdo para a Tembici.
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7 CONCLUSAO

O problema de localizagdo de estagcles de bicicletas compartilhadas é de grande
relevancia para o transporte urbano de grandes cidades e estda em linha com as medidas
sustentaveis adotadas em diversos paises, diminuindo a lotacao de ruas, trazendo maior rapidez
para transporte de pequenas distancias, reduzindo a emissao de gases de efeito estufa, reduzindo
a poluicdo sonora e disponibilizando um elemento de lazer individual e coletivo.

Em um primeiro momento, obtiveram-se dados abertos referentes ao sistema de
transporte de bicicletas da cidade de Nova York, assim como os dados sobre a populagdo dos
bairros da cidade. Com isso, ja foi possivel modelar o problema, utilizando-se os algoritmos
mencionados anteriormente, de resolucao do problema de p-mediana.

Foram utilizados dois algoritmos para obtencdo das localizacdes das estacdes. O SA
apresentou resultados superiores ao PSO, com um valor de residuo inferior e com melhor
distribuicdo das estacOes tanto para o caso de Manhattan quanto para a USP. Entretanto, ele
teve oito vezes mais iteracOes e um tempo vinte vezes superior ao PSO, mostrando um custo
computacional elevado. Tendo em vista os altos niveis de exploragdo mostrados no SA e a
habilidade de evitar pontos de minimo locais esse foi o escolhido, obtendo-se 75 estacdes para
a ilha de Manhattan e 18 para a cidade universitaria da USP.

Apds termos obtido as localizacOes das estacdes, foi feita uma simulacao grafica de
uma possivel utilizacdo das bicicletas em cada estacdo, por meio das frequéncias extraidas das
bases de dados. Com essa simulacdo, foi possivel observar e corrigir estagdes que poderiam
ficar sem bicicletas e outras que, ao contrario, estariam superlotadas impedindo a devoluc3o.

Foram realizadas simulagdes de Manhattan de uma e de dezessete horas, enquanto
que para a USP tivemos simulagdes de uma e catorze horas, além da simulacdo das esta¢des ja
existentes da Tembici.

Analisando os resultados das simula¢des realizadas, também foi possivel fazer uma
estimativa do nimero de bicicletas ideal para cada uma das estacGes. Em estacGes com
problemas de lotacdo ou de falta de bicicletas, seus nimeros de bicicletas foram atualizados
em um processo iterativo, a fim de reduzir tais dificuldades.

Os algoritmos testados poderiam ser utilizados na implementacdo de novos sistemas
de bicicletas compartilhadas. Aliados a pesquisa e a uma sélida base de dados, eles poderiam ser
essenciais para reducao de estacOes inutilizadas e redundantes, ou na previsao de estacbes com
problemas de superlotacdo. Mais do que corrigir erros encontrados, esse sistema de otimizacao

visa a prevencao de erros na implementacdo de sistemas similares em outras regioes ou cidades.
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APENDICE A - Tratamento Inicial dos Dados

Cédigo referente a andlise e tratamento inicial dos dados retirados da cidade de Nova

pandas as pd
matplotlib.pyplot as plt
0s

io

numpy as np

pandas as pd
matplotlib.pyplot as plt
missingno as mn

seaborn as sns

from sklearn import preprocessing

#Data from NYC
df2 = pd.read_csv("dados.csv")

columns=[’tripduration’,’start_station_id’,’start_station_latitude’,

’start_station_longitude’,’end_station_id’,’end_station_latitude’,

’end_station_longitude’,’bikeid’,’birth_year’,’gender’]

x = df2[columns] #returns a numpy array

min_max_scaler = preprocessing.MinMaxScaler()

x_scaled = min_max_scaler.fit_transform(x)

df3 = pd.DataFrame(x_scaled,columns=columns)
df3.head ()

# checking for incompletness of data
mn.matrix(df2.sample(500), figsize=(10,6))

#Dendrogram

mn.dendrogram(df2, figsize=(10,6))
mn.bar(df2, figsize=(10,6))

#histograms
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df2

.hist(bins=50, figsize=(20,15))

#heatmap and correlation

sns
df2

.heatmap(df3.corr());

.corr()

#Finding Outliers

sns
sns

sns

plt

def

def

def

def

.set_context ("notebook", font_scale=1.1)
.set_style("ticks")
.1lmplot (’birth_year’, ’tripduration’,

data=df2,

fit_reg=True,

scatter_kws={"marker": "D",
"s": 10})

.show()

get_iqr_values(df_in, col_name):

median = df_in[col_name] .median()

ql = df_in[col_name].quantile(0.25) # 25th percentile / 1st quartile
g3 = df_in[col_name].quantile(0.75) # 7th percentile / 3rd quartile
igr = g3-ql #Interquartile range

minimum = ql-1.5x%iqr

# The minimum value or the |- marker in the box plot

maximum = g3+1.5%iqr
# The maximum value or the -| marker in the box plot

return median, ql, g3, iqr, minimum, maximum

get_iqr_text(df_in, col_name):

median, ql, g3, iqr, minimum, maximum = get_iqr_values(df_in, col_name)
text = f"median={median:.2f}, qil={ql:.2f}, q3={q3:.2f},

iqr={iqr:.2f}, minimum={minimum:.2f}, maximum={maximum:.2f}"

return text

remove_outliers(df_in, col_name):
—s —» —» _, minimum, maximum = get_iqr_values(df_in, col_name)
df_out = df_in.loc[(df_in[col_name] > minimum) & (df_in[col_name] < maximum)]

return df_out

count_outliers(df_in, col_name):
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—s —» —» _, minimum, maximum = get_iqr_values(df_in, col_name)
df _outliers = df_in.loc[(df_in[col_name] <= minimum) |
(df_in[col_name] >= maximum) ]

return df_outliers.shape[0]

def box_and_whisker(df_in, col_name):
title = get_iqr_text(df_in, col_name)
sns.boxplot(df_in[col_name])
plt.title(title)
plt.show()

# removendo outliers segundo a regra dos quartis

box_and_whisker(df2, ’tripduration’)

print (f"tripduration has {count_outliers(df2, ’tripduration’)} outliers")

df2 = remove_outliers(df2, ’tripduration’)

box_and_whisker(df2, ’tripduration’)

sns.set_context ("notebook", font_scale=1.1)

sns.set_style("ticks")

sns.lmplot (’birth_year’, ’tripduration’,
data=df2,
fit_reg=True,
scatter_kws={"marker": "D",
"s": 10})

plt.show()
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APENDICE B - Cédigo Simulated Annealing

Cédigo possui duas entradas diferentes, uma para o caso da ilha de Manhattan e outra
para a USP.

#M6dulos importados

import pandas as pd

from numpy import exp

from numpy.random import randn

from numpy.random import rand

from numpy.random import seed

from matplotlib import pyplot as plt
import numpy as np

import random

import time

from __future_

_ _ import division
import math
import copy # array-copying convenience

import sys # max float

#Funcdes auxiliares
# objective function
def objective(x, y, pontos_demanda):
??? Fungdo objetiva do algoritmo de SA. Recebe trés vetores contendo os
pontos de demanda da regido que estad sendo estudada,
as posicoes x e y de cada ponto que foi determinado pelo algoritmo de SA.
Ela retorna a soma que corresponde a soma do minimo entre a&s disténcias dos
pontos do algoritmo e dos pontos de demanda.
Também é retornado o vetor de todas dist&ncias para andlise.
)
soma=0
dist2=[]
for n in range(len(pontos_demanda)):
#para cada ponto de demanda verifca-se todos pontos criados pelo algoritmo
dist=[]
for i in range(len(x)):
dist.append(euclidean(x[i],y[i],pontos_demanda[n] [0] ,pontos_demanda[n] [1]))

soma+=min(dist)*pontos_demanda[n] [2]
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dist2.append(dist)
return soma,dist?2

def euclidean(ai,aj,bi,bj):
)
Fungdo que retorna a distdncia euclidiana entre dois pontos em um espago 2d.
As entradas s8o as posigles x e y (i e j) de dois pontos a e b.

)

return np.sqrt((ai-bi)**2 + (aj-bj)**2)
#Rever se precisa

def normalize(x):
>?? fungdo para normalizar os pesos dos pontos de demanda.
PAD D]
novo=0
for i in range(len(x)):
novo+=x [i] **2
xnovo=x/np.sqrt (novo)

return xnovo

def valores_iniciais(N_stations,bounds,best):
??’Fungdo responsavel por gerar de forma aleatéria o vetor com
as estimativas dos pontos iniciais do SA.
Recebe o nimero de estagdes que serdo geradas, um vetor com os limites

em latitude e longitude da regido estudada e um vetor vazio best.

)

best2=best.copy ()

for p in range(N_stations):
#escolhe um x e m y de maneira randomica
#desde que esteja dentro dos limites de latitude e longitude
best2[0] [p]=np.float64(random.randrange (round(bounds [0] [0]*1000000),
round (bounds [0] [-1]*1000000) ) /1000000) .item()
best2[1] [p]=np.float64(random.randrange (round(bounds[1] [0]*1000000),
round (bounds [1] [-1]%*1000000) ) /1000000) . item()
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return best2
def normalize(x):
??? Fungdo para normalizar os pesos em cada ponto de demanda.
) )
novo=0
for i in range(len(x)):
novo+=x[i] **2
xnovo=x/np.sqrt(novo)
return xnovo
def soma_valores(best,step_size,bounds,c):
) ))
Nessa fungdo acontece a atualizagdo dos valores obtidos no algoritmo.
recebemos o vetor best com as posigdes atuais do SA que foram aceitas,
o step_size para determinar o acrescimo na posigdo de cada ponto,
vetor com os limites da regi&o, bound
e o vetor ¢ com o fator de cristalizacdo.
Retorna o novo vetor best2 com os novos valores a serem testados pelo algoritmo,

p indicando qual foi alterado e axis indicando se foi no eixo x ou y.

)

best2=np.copy(best)

Nx=0.0
Ny=0.0

if random.random() < 0.5:
#Se for menor do que 0.5 escolhemos atualizar o eixo X.
axis = 0 #indicagdo do eixo Xx.

p = random.randrange(len(best[0])) #escolha do valor a ser atualizado

while True:
Nx =0
for i in range(c[2*p]):
Nx += random.uniform(-1,1)
best2[0] [p]=np.float64(best [0] [p]+Nx*step_size[0]/c[2*p]) .item()

#atualizagdo do valor.

if best2[0] [p] >= bounds[0] [0] and best2[0] [p] <= bounds[0] [-1]:

#caso esteja fora dos limites refaz a atualizacgdo.
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break

else: #se random>0.5 esoclhemos atualizar o eixo y.
axis =1
p = random.randrange(len(best[1]))
while True:
Ny =0
for i in range(c[2*p+1]):
Ny += random.uniform(-1,1)
best2[1] [p]=np.float64(best[1] [p]+Ny*step_size[1]/c[2*p+1]).item()
if best2[1] [p] >= bounds[1] [0] and best2[1] [p] <= bounds([1][-1]:
break

return best2, p, axis

#funcdo principal

def simulated_annealing(objective, bounds, step_size, temp,N_stations,best):
??? Fungdo principal do simulated_annealing onde acontecem as inicializagdes
dos pontos, atualiza¢des e determina os melhores pontos.
Recebe os limites da regido, o step_size do incremento, a temperatura do
recozimento, nimero de estagdes e um vetor vazio best.
Retorna principalmente os melhores pontos correntes "current" e a soma da fungéo
objetiva desses pontos "current_eval",
além de demais vetores que sdo utilizados para plotagem de graficos para
verificar o funcionamento do algoritmo.
230
#valores iniciais e inicializagdo de vetores para extragdo de dados.
num_accepted = 1
num_evaluated = 0
x = []
=10
dist2=[]
#vetores para andlise do funcionamento do cédigo
temp2=[]
num_accepted2=[]
num_evaluated2=[]
c2=[]



APENDICE B. Cédigo Simulated Annealing 54

# gera o ponto inicial
best = valores_iniciais(N_stations,bounds,best)
# inicializa o vetor com fator de cristalizacgdo com uns.
c=2*N_stations*[1]
# avalia o ponto inicial
best_eval,dist = objective(best[0], best[1], pontos_demanda)
# determina a solugdo corrente

curr, curr_eval = best, best_eval

# Roda o cédigo. Termina quando n&o encontra nenhuma outra solugdo aceita.
while num_accepted > O:

temp2. append (temp)

num_accepted2.append (num_accepted)

num_evaluated?2.append (num_evaluated)

num_accepted

num_evaluated

#Analisa no maxima N_stations*40 resultados aceites ou

#N_stations*80 resultados avaliados.

while num_accepted < N_stations*20*2 and num_evaluated < N_stations*40x*2:
# Aualizagdo do ponto anterior
candidate, p, axis = soma_valores(curr,step_size,bounds,c)
num_evaluated += 1
# Obtém a disténcia do ponto atualizado.

candidate_eval,dist = objective(candidate[0],candidate[1],pontos_demanda)

# Determina a diferenga entre o ponto candidato e o ponto corrente.

diff = (candidate_eval - curr_eval)

# Calcula a temperatura

t = temp

# calcula o fator de metropolis.
metropolis = exp(-diff / t)

# Verifica se devemos aceitar o novo ponto
if diff < 0 or rand() < metropolis:

num_accepted += 1

if c[2*p + axis]>56:
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c[2xp + axis] = round(c[2*p + axis]/10)

c3=np. copy(c)

# Aceita o novo ponto.
curr, curr_eval = candidate, candidate_eval
else:
#caso ndo aceite, aumenta o fator de cristalizagdo do ponto.
if c[2*p + axis] < 40:
c[2xp + axis] += 1

c3=np. copy(c)

c2.append(c3)

f.append(curr_eval)
#atualizagdo da temperatura do recozimento
temp = temp*0.98

x.append (curr)

return [curr, curr_eval, x, f,temp2,c2,num_accepted2,num_evaluated?]

#condigdes iniciais para funcionamento do SA.

#numero de estacgdes

N_stations= 18

#Vetor vazio para armanezar os pontos obtidos do SA.

best= [[0 for col in range(N_stations)] for row in range(2)]

#cria pontos de demanda da USP com base no arquivo csv inputado.

#Transforma o dataframe em lista e insere em um novo vetor
#pontos_demanda para realizar uma cépia.
demanda_lat=df[’latitude’].to_list()

demanda_long=df [’longitude’] .to_list()
demanda_pop=normalize(df [’Population’].to_list())

pontos_demanda=np.zeros((len(demanda_long),3))

for j in range(len(demanda_long)):
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pontos_demandal[j] [1]=demanda_lat[j]
pontos_demandal[j] [0]=-demanda_long[j]
pontos_demanda[j] [2]=demanda_pop[j]

# seed para o gerador de niumeros pseudoaleatérios.
seed (1)

# define o limite da regido que estd sendo tratada.
bounds=[[-df.longitude.max () ,-df.longitude.min()],
[df .1latitude.min() ,df.latitude.max()]]

# definicdo do step_size maximo
step_size = [bounds[0] [-1]-bounds[0] [0] ,bounds[1] [-1]-bounds[1] [0]]

# temperatura inicial.

temp = 10

# performa-se o algoritmo de SA, iniciando o tempo para andlise futura.
start_time = time.time()

best, score,x,f_SA,temp,crist,NA,NE =

simulated_annealing(objective, bounds, step_size, temp,N_stations,best)
tempo_SA= (time.time() - start_time)

print (’Done!’)

print(Pf(%s) = %f’ % (best, score))

#plota-se um grafico com os pontos de demanda e

#os pontos obtidos pelo SA para andlise.

best2 = [1 * -1 for i in best[0]]

plt.scatter(best2,best[1] ,marker="+")

pd_x=[]

pd_y=[]

for i in range(len(pontos_demanda)):
pd_x.append (-pontos_demandal[i] [0])
pd_y.append(pontos_demandal[i] [1])

plt.scatter(pd_x,pd_y,marker="o")

plt.show()

#Entrada para USP

#importacdo da base de pontos de demanda da usp.
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df = pd.read_csv("usp.csv",names=

[’id’,’Name’,’Population’,’latitude’,’longitude’])

#estabelece os limites do grafico em latitude e longitude.
BBox = ((df.longitude.min(), df.longitude.max(),
df .latitude.min(), df.latitude.max()))
df .head ()
BBox

#Entrada para Manhattan
df = pd.read_csv("manhattan_centros_local.csv",

names=[’id’,’Name’,’Population’,’latitude’,’longitude’])

BBox = ((df.longitude.min(), df.longitude.max(),
df.latitude.min(), df.latitude.max()))

df .head )

BBox

#Analise dos valores obtidos no cédigo

#Evolucdo variaveis x e y para cada ponto

X = np.array(x)
len(x[0] [0])

fig, axs = plt.subplots(n,2,figsize=(2.5%n,2.5%n))

n

for i in range(n):
axs[i] [0] .plot(temp,x[:,0][:,1i])
axs[i] [0] .set_xscale("log")
axs[i] [0] .invert_xaxis()
axs[i] [1] .plot(temp,x[:,1]1[:,1i])
axs[i] [1] .set_xscale("log")
axs[i] [1] .invert_xaxis()
axs[i] [0] .1legend ([’ $x_{%d}$ % (i+1)]1)
axs[i] [1] .1legend ([’ $y_{%d}$ % (i+1)]1)

fig.suptitle("Evolugdo das variiveis ao longo da temperatura')
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# Curva do nimero de aceites e de avaliados
plt.figure(2)

plt.plot(temp,NE)
plt.xscale("log")

plt.gca() .invert_xaxis()
plt.legend (["Numero Avaliados"])
plt.xlabel("temperatura")
plt.figure(1)

plt.plot(temp,NA)
plt.xscale("log")

plt.gca() .invert_xaxis()
plt.legend(["Numero Aceites"])
plt.xlabel ("temperatura")

#Curva do fator de cristalizagéo

xcrist=[]

ycrist=[]

x2crist=[]

y2crist=[]

for i in range(len(crist)):
xcrist.append(crist[i] [0])
ycrist.append(crist[i] [1])
x2crist.append(crist[i] [2])
y2crist.append(crist[i] [3])

plt.figure(3)
plt.plot(temp,xcrist)
plt.legend(["Cristalizagdo x"])
plt.gca() .invert_xaxis()
plt.xscale("log")

plt.xlabel ("temperatura")

plt.figure(2)
plt.plot(temp,ycrist)
plt.legend(["Cristalizagdo y"])
plt.gca() .invert_xaxis()
plt.xscale("log")

plt.xlabel ("temperatura")
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plt.figure(4)
plt.plot(temp,x2crist)
plt.legend(["Cristalizagdo x"])
plt.gca() .invert_xaxis()
plt.xscale("log")
plt.xlabel("temperatura")

plt.figure(5)
plt.plot(temp,y2crist)
plt.legend(["Cristalizag&do y"])
plt.gca() .invert_xaxis()
plt.xscale("log")
plt.xlabel("temperatura")

# Curva da funcdo objetiva
f_SA = np.array(f_SA)

plt.figure()
plt.plot(temp,f_SA)
plt.legend(["Objective"])
plt.gca() .invert_xaxis()
plt.xscale("log")
plt.xlabel ("temperatura")

Disc=20
temp2=[]
for i in range(0,len(temp)-Disc,Disc):

temp?2. append ((sum(temp[i:i+Disc-1]))/len(temp[i:i+Disc-1]))
Media=[]
for i in range(0,len(f_SA)-Disc,Disc):
Media.append((sum(f_SA[i:i+Disc-1]))/len(f_SA[i:i+Disc-1]))

Media = np.array(Media)

Maxi=[]
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for i in range(0,len(f_SA)-Disc,Disc):

Maxi.append (max(f_SA[i:i+Disc-1]))

Minim=[]

for i in range(0,len(f_SA)-Disc,Disc):

Minim.append (min(f_SA[i:i+Disc-1]))

Minim = np.array(Minim)

plt

plt.
plt.
plt.
plt.
plt.
plt.
plt.

.figure(3)

plot(temp2,Minim)

plot(temp2,Media)

plot(temp2,Maxi)

xscale("log")

gca() .invert_xaxis()
legend(["Minimo", "Média", "Maximo"])

xlabel ("temperatura")
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APENDICE C - Cédigo Particle Swarm Optimization

# Algoritmo do Particle Swarm Optimization

# funcdo objetiva que estamos tentando minimizar.

def funcl(x):
290
Funcdo objetiva do algoritmo do PSO. Recebe o vetor x com as posigoes X e y
de cada ponto que foi determinado pelo algoritmo.
Nesse caso o vetor de pontos_demanda foi estabelecido como variavel global.
Ela retorna a soma que corresponde a soma do minimo entre as disténcias
dos pontos do algoritmo e dos pontos de demanda.

)

soma = 0.0

for n in range(len(pontos_demanda)):
#para cada ponto de demanda verifca-se todos pontos criados pelo algoritmo
dist = []

for i in range(round(len(x)/2)):
x1 = x[2%i]
yl = x[2xi+1]
dist.append(euclidean(x1l,yl,pontos_demanda[n] [0],,pontos_demandal[n] [1]))

soma+=min(dist)*pontos_demanda[n] [2]

return soma

class Particle:
def __init__(self,x0):
self.position_i=[] posigd3o da particula
self.velocity_i=[] velocidade da particula
self.pos_best_i=[] melhor posigdo individual

self.err_best_i=-1 melhor erro individual

H HF H H

self.err_i=- erro individual

for i in range(O,num_dimensions):
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self .velocity_i.append(random.uniform(-1,1))
self .position_i.append(x0[i])

# Avalia a posigéo

def evaluate(self,costFunc):

self.err_i=costFunc(self.position_i)
# Verifica se a posigdo corrente é uma melhor posigdo individual
if self.err_i < self.err_best_i or self.err_best_i==-1:

self .pos_best_i=self.position_i

self.err_best_i=self.err_i

# Atualiza a velocidade da particula

def update_velocity(self,pos_best_g,w,cl,c2):

for i in range(0,num_dimensions):
ri=random.random()

r2=random.random()

vel_cognitive=cl*rix*(self.pos_best_i[i]-self.position_i[i])
vel_social=c2*r2*(pos_best_g[i]-self.position_i[i])

self .velocity_i[i]=w*self.velocity_i[i]l+vel_cognitive+vel_social

# Atualiza a posigdo da particula de acordo com a velocidade atualizada.
def update_position(self,bounds):
for i in range(0,num_dimensions):

self .position_i[i]=self.position_i[i]+self.velocity_il[i]

if i%2 ==0:
#verifica se os novos valores de posigdo estdo dentro dos limites,
sendo determina nova posigdo aleatéria.
if self.position_i[i]>bounds[0] [1] or
self.position_i[i] < bounds[0] [0]
self .position_i[i]=random.random()* (bounds [0] [1]-bounds [0] [0])
+bounds [0] [0]
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else:
if self.position_i[i]>bounds[1][1] or
self .position_i[i] < bounds[1][0]:
self.position_i[i]=random.random()* (bounds[1] [1]-bounds[1] [0])
+bounds [1] [0]

class PS0Q):
def __init__(self,costFunc,x0,bounds,num_particles,
maxiter,pontos_demanda,w,cl,c2):
global num_dimensions
global pos_best_g
global itera
global err_best_g
global list_err_best_g
list_err_best_g=[]
global swarm_iterations

swarm_iterations=[]

num_dimensions=len (x0)
err_best_g=-1 # melhor erro para o grupo

pos_best_g=[] # melhor posigdo para o grupo

# estabelece o swarm
swarm=[]
for i in range(0,num_particles):

swarm.append (Particle(x0))

# comega a optimizagdo do loop
i=0

1=0

stop = False

best_stop = err_best_g

while i < maxiter and stop == False:
# Percorre as particulas no swarm e avalia os pontos

for j in range(O,num_particles):

swarm[j] .evaluate(costFunc)



APENDICE C. Cédigo Particle Swarm Optimization 64

# Determina se a particula corrente é a melhor global.

if swarm[j].err_i < err_best_g or err_best_g == -1:
pos_best_g=list(swarm[j].position_i)
err_best_g=float(swarm[j].err_i)

itera=i

# percorre o swarm e atualiza a velocidade e posigédo
for j in range(O,num_particles):
swarm[j] .update_velocity(pos_best_g,w,cl,c2)
swarm[j] .update_position(bounds)

list_err_best_g.append(err_best_g)

list_swarm = []

for k in range(len(swarm)):
list_swarm.append(swarm[k] .pos_best_i.copy())
list_swarm2 = list_swarm.copy()

swarm_iterations.append(list_swarm?2)

i+=1

1+=1

if err_best_g > 1.01xbest_stop or err_best_g < 0.99*best_stop:
1=0
best_stop = err_best_g

if 1 >=20:

stop = True

# printa o resultado final
print (’FINAL:’)

print (pos_best_g)

print (err_best_g)

if __name__ == "__PSO__":

main()

#Run
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global pontos_demanda

#Determina condig¢des iniciais
n_estacoes = 18
num_particles=3000

maxiter=1000

vx=[]

vy=[]

for i in range(len(pontos_demanda)):
vx.append (pontos_demanda[i] [0])
vy .append (pontos_demandal[i] [1])

bounds=[[min(vx) ,max(vx)], [min(vy) ,max(vy)]]

pos_glob=[]
itera_g=[]
err_best_g_list=[]

swarm_iterations_g=[]

err_best=[]

w=0.1

# Constante de inercia (peso), quanto pesa a velocidade anterior
cl=2.5 # constante cognitiva

c2=3 #constante social

a=0

#inicio do programa.
start_time = time.time()
#caso queira fazer mais de uma vez o programa e retirar o melhor
for p in range(0,1):
at+=1
initial=[]
for i in range(O,n_estacoes):
pos_x=random.random () * (bounds [0] [1] -bounds [0] [0] ) +bounds [0] [0]
pos_y=random.random()* (bounds [1] [1]-bounds [1] [0])+bounds [1] [0]
initial.append(pos_x)

initial.append(pos_y)

PSO(funcl,initial,bounds,num_particles,maxiter,pontos_demanda,w,cl,c2)

pos_glob.append (copy.copy(pos_best_g))
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itera_g.append(copy.copy(itera))
err_best_g_list.append(copy.copy(list_err_best_g))
swarm_iterations_g.append(copy.copy(swarm_iterations))
err_best.append (copy.copy(err_best_g))

tempo_PS0= (time.time() - start_time)

#Plot de resultados com os pontos de demanda, SA e PSO.

min_value = min(err_best)

min_index = err_best.index(min_value)

errl=[]

err2=[]

for i in range(round(len(pos_glob[min_index])/2)):
errl.append(-pos_glob[min_index] [2*i])
err2.append(pos_glob[min_index] [2*i+1])

plt.scatter(errl,err2,marker="+",6s=55) #PS0

plt.scatter(best2,best[1] ,marker="v",6s=55) #SA

pd_x=[]

pd_y=[]

for i in range(len(pontos_demanda)):
pd_x.append (-pontos_demandal[i] [0])
pd_y.append(pontos_demandal[i] [1])

plt.scatter(pd_x,pd_y,marker="o0",s=20) #Pontos de demanda

plt.show()

#Tabela comparagdo dos algoritmos

from tabulate import tabulate

table = [[’Método’, ’N° Estagdes’, ’Residuo’, ’Tempo’,’Iteragdes’],
[’SA’, N_stations, score,tempo_SA,len(f_SA)],

[’PSO’ ,n_estacoes, min_value,tempo_PSO,len(err_best_g_list[min_index])]]
print (tabulate(table))

print(’Delta Residuo: > (score-min_value))
#Fungdes para verificagdo do cédigo

#Funcdo objetiva e evolugdo das variaveis dos pontos

min_value = min(err_best)

min_index = err_best.index(min_value)

f = np.array(err_best_g_list[min_index])
#f=f[:5]
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plt.figure(1)

plt.plot(f)
plt.legend(["Objective"])
plt.xlabel("iterag&o")

f2 = np.array(swarm_iterations_g[min_index])

posi=np.around(pos_glob[min_index],4)

f3=np.around(f2[itera_g[min_index]-1],4)

for j in range(len(£3)):

if bool(set(posi).intersection(£f3[j]1)):

vector=j

posicao=np.zeros((len(£f2[0] [0]), itera_g[min_index]))

for i in range(itera_g[min_index]):
for j in range(0,len(£f2[0][0])-1,2):
posicao[j] [i]=(f2[i] [vector] [j])
posicao[j+1] [i]=(£2[i] [vector] [j+1])

n = len(posicao)
fig, axs = plt.subplots(round(n/2),2,figsize=(2.5%n,2.5%n))

print (posicao)

for i in range(round(n/2)):
axs[i] [0] .plot(posicao[2*i] [:])
axs[i] [1] .plot(posicao[2*i+1] [:])
axs[i] [0] .1legend ([’ $x_{%d}$ % (i+1)]1)
axs[i] [1] .1legend ([’ $y_{%d}$ % (i+1)]1)

fig.suptitle("Evolugdo das varidveis ao longo das iteragdes")
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APENDICE D - Cédigo Processing e auxiliares

Cddigo utilizado no Processing e também cédigo utilizado para preparar os dados

inseridos.

#C6digo Auxiliar

import numpy as np

import random

from matplotlib import pyplot as plt
import math

import csv

import pandas as pd

# Fungdes auxiliares
def dist(a, b):
# distdncia entre dois pontos do tipo [xi,yi]
return ((al0] - b[0])**2 + (al[l] - b[1])**2)**0.5
def measure(a,b): # transforma distancia de latitude/longitude para metro
lat1=a[0] #é importante quando utilizamos a vel em m/s
lat2=b[0]
lonl=a[1]
lon2=b[1]
R = 6378.137; # Raio da terra em km.
dLat = lat2 * math.pi / 180 - latl * math.pi / 180;
dLon lon2 * math.pi / 180 - lonl * math.pi / 180;
a = math.sin(dLat/2) * math.sin(dLat/2) + math.cos(latl * math.pi / 180) *
math.cos(lat2 * math.pi / 180) *math.sin(dLon/2) *
math.sin(dLon/2);
c = 2 x math.atan2(math.sqrt(a), math.sqrt(1-a));
d =R *x c;

return d * 1000; # metros

def chooseDestination(n, num_trips, stations_s, tempo_atual,trip_queue,weights):

for i in range(num_trips):

stations2 = stations_s.copy()

choice = random.choices(range(0,len(stations?2)),weights=weights,k=1)

while choice[0] == n: # n3o pode escolher prépria estagdo como destino
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choice = random.choices(range(0,len(stations2)) ,weights=weights,k=1)

vel=np.random.normal (2.46661500206781, 1.73536134461819)*60
while vel<0.005:
vel=np.random.normal (2.46661500206781, 1.73536134461819)*60

trip_queue.append([stations2[n] [0],stations2[choice[0]] [0],
tempo_atual,tempo_atual +

round (measure(stations2[choice[0]] [0],stations2[n] [0])/vel)])
# insere na fila

return trip_queue

#importar as frequencias e as estagdes da cidade todas as 326.

df = pd.read_csv("frequencias_manh.csv",

names=[’id’,’Saida’,’Chegada’,’latitude’,’longitude’])

freq=[]
freq=df.values.tolist()

stations3=[]

for i in range(0,len(freq)):
stations3.append([[float(freq[i] [4]),float(freqli] [3])],
float(freqli] [2]),int (math.ceil(float(freql[i] [1]))),
round (np.random.normal (10,3))])

stations3=np.array(stations3)

print(stations3)

#Cédigo para gerar as filas
stations4=stations3.copy()

stations=stations4.copy()

trip_queue = [] # fila de viagens [[destinol,tempo de chegadall],
#[destino2,tempo de chegada2?],...]
tempo=60*14
for i in range(tempo): # iteragles - tempo rodando modelo
if 1%60==0:
stations=stations3.copy()

peso = stations[:,2].copy()
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weights = stations[:,1].copy()

for n in range(len(stations)): # cada estagdo

choices_l=list(range(0,int(peso[n])+1))
weights_1=[1/60]*(int (peso[n])+1)
weights_1[0]=1-peso[n]/60

num_trips=random.choices(choices_1l,weights_1,k=1)

if num_trips[0] > stations[n] [3]:
# ndo podem sair mais bicicletas do q tem na estagdo

num_trips[0] = stations[n] [3]

stations[n] [2] -= num_trips[0]
stations[n] [3] -= num_trips[0]

#bicicletas saem da estagdo de origem

trip_queue=chooseDestination(n, num_trips[0], statioms, i,
trip_queue,weights)
#funcdo q escolhe destino e tempo de viagem e insere na

fila de viagens

# Visualizagdo simplificada
print ("Minuto %d" %(i))

print(’Fila de viagens:’, trip_queue)

#Alterando o formato do vetor trip_queue

queue_stations=[]

for k in range(len(trip_queue)):
queue_stations.append(trip_queue [k] [0])
queue_stations.append(trip_queue[k] [1])

remove_duplicate = []
for i in queue_stations:
if i not in remove_duplicate:

remove_duplicate.append (i)
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print(len(queue_stations))

print (len(remove_duplicate))

N_bikes=[]
for i in range(len(stations3)):
for k in range(len(remove_duplicate)):
if remove_duplicate[k]==stations3[i] [0]:
N_bikes.append(stations3[i] [3])

print (remove_duplicate)

#retorna lista das estagles para colocar no processing

print (N_bikes)
trip_queue2=[]
trip_queue2=trip_queue.copy ()

for i in range(len(trip_queue2)):
trip_queue2[i] [2]=float (trip_queue2[i] [2])
trip_queue2[i] [3]=float (trip_queue2[i] [3])
for k in range(len(remove_duplicate)):
if remove_duplicatel[k]==trip_queue2[i] [0]:
trip_queue2[i] [0]=k
elif remove_duplicate[k]==trip_queue2[i] [1]:
trip_queue2[i] [1]=k
print (trip_queue?2)
print (len(trip_queue?2))

with open(’trip_queue.csv’, ’w’) as myfile:
wr = csv.writer(myfile,quoting=csv.QUOTE_ALL)
wr.writerow(trip_queue2)
#iretorna um csv com as coordenadas de inicio, fim,

tempo de inicio e tempo de fim em uma lista.

#Codigo Processing

import random
from Trip import *

import math
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def changeCoordinates(p):

# converte x
01dMin = -74.015

0ldMax = -73.905

NewMin = 0.0

NewMax = 500

0ldRange = (0ldMax - 01dMin)
NewRange = (NewMax - NewMin)

NewValuex = (((p[0] - 01dMin) * NewRange) / OldRange) + NewMin

# converte y

01dMin = 40.715

0ldMax = 40.885

NewMin = 900

NewMax = 0.0

0ldRange = (0ldMax - 01dMin)
NewRange = (NewMax - NewMin)

NewValuey = (((p[1] - 01dMin) * NewRange) / OldRange) + NewMin

return [NewValuex,NewValuey]
class Trip:
def __init__(self, position =0, origin = 0, destination = O,

startTime = 0, totalTime = 0):

self.origin = origin

self .destination = destination

position2=[]

for i in range(len(stations[position])):
position2.append(stations[position] [i])

#arrayCopy (stations[position],position2)

self .position=position2

self.startTime = startTime*60
self.totalTime= totalTimex*x60
def update(self):
if frameCount> self.startTime:
self .position[0] += (stations[self.destination] [0] -
stations[self.origin] [0])/
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(self.totalTime-self.startTime)

self .position[1] += (stations[self.destination][1] -
stations[self.origin] [1])/
(self.totalTime-self.startTime)

def drawBike(self,i):
if frameCount > self.startTime:
if frameCount < self.totalTime:
#text(i,self.position[0], self.position[1])
circle(self.position[0], self.position[1], 7)
elif frameCount == self.totalTime:
N_bikes[(self.destination)]+=1
elif frameCount == self.startTime:
N_bikes[(self.origin)]-=1
#inputs

stations = [[-73.9678664378652, 40.75829727], [-73.95274565689759, 40.8030079]]

N_bikes=[37, 31, 20, 14]
trips_csv=[[[-74,40.7],[-73.98,40.68],0,20],
[[-73.95,40.76],[-73.96,40.65],30,50]]
#exemplos de valores

for i in range(len(stations)):

stations[i] = changeCoordinates(stations[i])

trips = []
for i in range(len(trips_csv)):
positionl = trips_csv[i] [0]
originl = positionl
destinationl = trips_csv[i] [1]
startTimel = trips_csv[i] [2]
endTimel = trips_csv[i] [3]
print([positionl,originl,destinationl,startTimel, endTimel])
trips.append(Trip(positionl,originl,destinationl,startTimel, endTimel))

print(trips)

def setup():
#size (313, 777)
size (500,900)
frameRate (60)
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#noStroke ()

def draw():
background(0,0,0)
img = loadImage("map (10).png")
img.resize(500,900) ;
image (img,0,0)
global stations
global trips
global N_bikes
textSize(35)
£i11(0, 0, 0)
text (’Minutos:’,40, 150)
text (frameCount/60,185, 150)
text(’:’,225, 150)
text (frameCount’60,235, 150)
# draw stations
for i in range(len(stations)):
fil1(255, 0, 0)
circle(stations[i] [0], stations[i][1],10)
textSize(18)
£i11(0, 0, 0)
text (N_bikes[i],stations[i] [0]-19, stations[i] [1]-5)
#text (i,stations[i] [0]+5, stations[i] [1]+5)
£i11(255, 0, 0)
for i in range(len(trips)):
trips[i] .update()
trips[i] .drawBike (i)
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