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Mecatrônica, essenciais no nosso processo de formação profissional, que nos deram toda a base

para realização desse trabalho.
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RESUMO

NASCIMENTO, José, FUNÇÃO, Eduardo. Estudo e otimização da localização de bicicletas
compartilhadas na Universidade de São Paulo. 2021. 74 f. Trabalho de Conclusão de Curso –
PMR - Engenharia Mecatrônica, Universidade de São Paulo. São Paulo, 2021.

Estações de compartilhamento de bicicletas estão sendo cada vez mais adotadas em pequenas
e grandes cidades ao redor do mundo, melhorando a mobilidade urbana de forma sustentável e
reduzindo a emissão de gases de efeito estufa e garantindo uma vida mais saudável aos seus
usuários. Um dos grandes problemas associados ao seu uso está na falta de estações perto
de regiões com alta demanda e elevada distância entre elas. Em um primeiro estágio foram
utilizados dois algoritmos metaheuŕısticos, Particle Swarm Optimization e Simulated Annealing
para obter os pontos ideais das estações e, em seguida, foram simuladas as interações dos
usuários com as novas estações, utilizando o software gráfico Processing. Os dados utilizados
para guiar os algoritmos foram obtidos da base de Nova York.

Palavras-chave: Compartilhamento de Bicicletas. Otimização por Enxame de Part́ıculas.
Recozimento Simulado.



ABSTRACT

NASCIMENTO, José, FUNÇÃO, Eduardo. Shared Bicycles Location Study and Optimization
in the University of São Paulo: Users approach. 2021. 74 f. Trabalho de Conclusão de Curso –
PMR - Engenharia Mecatrônica, Universidade de São Paulo. São Paulo, 2021.

Bike-sharing stations are increasingly being adopted around the world, improving urban mobility
in a sustainable way, reducing greenhouse gas emissions, and ensuring a healthier life for their
users. One of the major problems preventing further use is the lack of stations close to regions
with high demand and the long distances between them. In a first stage, two metaheuristic
algorithms, Particle Swarm Optimization and Simulated Annealing were used to obtain the
ideal points of the stations, and then the interactions of users with the new stations were
simulated using a graphic software named Processing. The data used to guide the algorithms
were obtained from the New York City base.

Keywords: bike-sharing. Particle Swarm Optimization. Simulated Annealing. Facility Location
Problem.
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Figura 13 – Áreas populacionais da cidade de Nova York (NTA). . . . . . . . . . . . . 21
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6.3 SIMULAÇÃO PROCESSING PARA MANHATTAN . . . . . . . . . . . . . . 34

6.4 SIMULATED ANNEALING E PARTICLE SWARM OPTIMIZATION PARA USP 36
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1 INTRODUÇÃO

A mobilidade urbana é de importância ı́mpar para o entendimento do desenvolvimento

das cidades, principalmente quando se trata de grandes centros urbanos. Especificamente no

Brasil, a falta de planejamento urbano (com desenvolvimento voltado principalmente para o

transporte rodoviário) contribuiu para que um problema crônico se revelasse no transporte do

páıs. Trânsito problemático, engarrafamentos constantes, transporte público sucateado, falta

de meios alternativos para locomoção e descaso com sistemas multimodais são alguns dos

fatores que abrem a discussão, clamando por perguntas e para a procura de soluções.

Uma das formas de transporte que ganha popularidade desde a última década são as

bicicletas compartilhadas. No Brasil, foram introduzidas em dezembro de 2008 com o “Pedala

Rio”, como uma forma de teste do modal na região sul carioca. Em São Paulo, foram várias as

tentativas de introduzir o modal na cidade, como por exemplo o caso das bicicletas individuais

da Yellow e outra da empresa Tembici em parceria com o banco Itaú (TEMBICI, 2020).

A abordagem da Yellow se baseava em um sistema de bicicletas que poderiam ser

retiradas e estacionadas em qualquer lugar da cidade mediante o uso de uma trava para

desbloqueá-las. Tal modelo apresenta alto custo de manutenção uma vez que muitas são

jogadas ao chão ou mesmo roubadas. O modelo que será abordado neste relatório é o da

empresa ”Tembici” em que as bicicletas só podem ser retiradas e colocadas em estações

espalhadas pela cidade. As suas principais vantagens são um menor custo de manutenção por

conta da menor taxa de avaria feita pelos usuários e a facilidade de recolha das bicicletas para

manutenção ou rearranjo, uma vez que se sabe exatamente a sua localização.

Apesar dos modelos de negócio para as bicicletas compartilhadas nem sempre triunfa-

rem, é inquestionável o poder do modal como alternativa de desafogamento do trânsito em

grandes centros urbanos, funcionando especialmente bem para distâncias curtas em percursos

majoritariamente planos.

A partir disso, a questão que surge e o problema o qual se pretende tratar aparecem

naturalmente: como otimizar a localização de estações de bicicletas compartilhadas, ou a

localização das oficinas onde será feita a manutenção das bicicletas. Esse problema, em resumo,

está atrelado diretamente ao fluxo de pessoas dentro de uma cidade. A ida e a volta do trabalho

e assim como os demais afazeres das pessoas devem gerar um fluxo relativamente repetitivo

e previśıvel, devendo ser essencial para a escolha dos locais das estações de bicicletas, assim

como a sua quantidade necessária.
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2 OBJETIVO E MOTIVAÇÃO

Estima-se que o mercado mundial de bicicletas compartilhadas está crescendo 20% ao

ano de acordo com uma pesquisa realizada pela Roland Berger (BERGER, 2008). O principal

mercado é o Asiático, sendo a China o principal expoente com mais de 2 milhões de bicicletas

compartilhadas apenas em Pequim (BERGER, 2008) e em crescimento.

A expansão do mercado corrobora com a visão atual de ESG empresarial (Environ-

mental, Social and Governance) de redução das emissões de carbono e melhora da qualidade

de vida alinhado com o crescimento de faixas reservadas e sinalização para bicicletas em

grandes metrópoles. Com o crescimento do mercado teremos o desenvolvimento de serviços e

sistemas mais inteligentes de compartilhamento de bicicletas e também da sua reorganização e

manutenção.

A otimização das estações de bicicletas compartilhadas visa garantir um conforto ao

usuário que necessita do meio de transporte principalmente nos horários de maior demanda

e em localidades espećıficas. Além de com isso reduzir os custos de transporte, rearranjo e

manutenção da empresa num mercado em expansão. Desse modo, garantindo melhorias sociais

para a população.

O problema é relevante e pode ser abordado no curso de Engenharia Mecatrônica

pelo desenvolvimento de análises e utilização de algoritmos por programação para estudar o

caso. Projetos de criação de softwares, utilizando-se algoritmos methaeuŕısticos para análise de

grandes volumes de dados são muito relevantes na atualidade.
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3 ESTADO DA ARTE

Vogel, Greiser e Mattfeld (2011) exploraram os padrões de atividade de sistemas de

bicicletas compartilhadas. Por meio de Data Mining, este complexo sistema pode ser entendido

de uma forma melhor, revelando também um dos principais problemas no compartilhamento de

bicicletas: o desbalanceamento na distribuição das bicicletas, gerado justamente por esse fluxo

desigual da atividade nas cidades durante o dia.

Outra forma de abordar o problema é mudando o foco para o reabastecimento das

estações de bicicletas. Papazek et al. (2013) propõem um sistema para otimizar as rotas que

os véıculos de reabastecimento devem seguir para que as estações com mais demanda nos

diferentes peŕıodos do dia estejam abastecidas.

Seguindo a mesma linha de estudo, foi, também, proposto por Schuijbroek, Hampshire

e van Hoeve (2017) um modelo para determinar a necessidade de rebalanceamento de bicicletas

entre as estações e qual seria a melhor rota do véıculo responsável pelo rebalanceamento.

A questão de definir uma localização de estações de bicicletas compartilhadas sempre

esteve no cerne da problemática em vista da implementação de tais sistemas. Kloimüllner e

Raidl (2017) discutem esse problema na fase do planejamento. Com informações reduzidas

propõe-se um sistema que irá escolher onde serão constrúıdas tais estações e de qual tamanho

devem ser. Fatores como usuários em potencial, demanda local e Budget da empresa são

levados em consideração. A principal vantagem de se utilizar um sistema computacional para

essa decisão é que, dessa forma, a escolha manual das primeiras estações a serem constrúıdas

pode ser evitada, diminuindo-se os posśıveis erros e perdas.

Caggiani et al. (2019) propõem um sistema para otimização baseado na satisfação do

usuário. Nesse modelo, pressupõe-se que já exista um sistema em funcionamento na cidade. A

partir dáı, dados como desistência de usuários, além de informações sobre o abastecimento das

estações (por exemplo, estações cheias ou vazias) podem ser usados para definir a alocação de

recursos para esse sistema, procurando maximizar a satisfação do usuário.

Mais recentemente, algumas pesquisas têm considerado outras áreas influenciadas

por sistemas de bicicletas compartilhadas. Yang, Jiang e Zhang (2021) investigam como esses

sistemas podem ser responsáveis por aumentar a demanda em atrações e pontos tuŕısticos da

cidade.

Ter uma visão que procura por soluções ecológicas e sustentáveis tornou-se indispen-

sável na gestão de uma cidade como um todo. Não diferente deve ser a forma como é tratada

a questão da mobilidade urbana. Numa pesquisa de ABDELLAOUI ALAOUI e KOUMETIO

TEKOUABOU (2021), foi proposto um sistema que utiliza internet das coisas e Machine

Learning para facilitar a gestão, além de potencializar a disponibilidade de bicicletas e aumentar

a lucratividade de sistemas de compartilhamento. O modelo também é capaz de prever o número

de bicicletas utilizadas durante algum peŕıodo de tempo com base em diversos parâmetros
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dinâmicos. Dados reais sobre o sistema de compartilhamento de bicicletas de Londres foram

utilizados para comprovar a eficácia do modelo.

Após a instalação de um serviço de bicicletas compartilhadas, são necessários apri-

moramentos, visando a sobrevivência financeira da empresa. Dokuz (2021) propõe um modo

de identificação espaciotemporal de estações-chave de bicicleta em uma cidade. Para isso são

propostos dois algoritmos que devem identificar tais estações chave. Provando sua eficácia, os

algoritmos podem ser bons aliados para a pesquisa do comportamento da mobilidade urbana em

termos do uso de bicicletas, além de ser fonte de informações valiosas a respeito da satisfação

do usuário.

Os efeitos observados na mobilidade urbana estão fortemente ligados com fenômenos

observáveis sociais e econômicos. Em um artigo de Chibwe et al. (2021), pretendeu-se relacionar

a taxa de desemprego com a demanda de bicicletas compartilhadas. Usando dados do sistema

de Londres, como era previsto, observou-se forte relação entre as duas situações.

De forma mais prática Cintrano, Chicano e Alba (2020) documentam a utilização de

diferentes algoritmos metaheuŕısticos para a definição de localização de estações de bicicletas

compartilhadas. Aplicando-se a um caso real, o artigo busca definir as melhores localizações

para as estações do sistema de bicicletas compartilhadas da cidade de Málaga, na Espanha. Os

algoritmos metaheuŕısticos são uteis para solucionar o problema das p-medianas e se aplicam

bem no caso da otimização da localização de estações de bicicletas compartilhadas.
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4 BASE TEÓRICA

Revisando a pesquisa feita acerca do tema, verifica-se que o desafio de otimizar a

localização de estações de bicicletas compartilhadas se enquadra bem como um problema das

p-medianas. Nesse tipo de problema, deve-se buscar por escolher localizações ótimas de acordo

com pontos de demanda já especificados.

4.1 PROBLEMA DAS P-MEDIANAS (P-MEDIAN PROBLEM)

Desenvolvido a partir das pesquisas de Hakimi (1964), o problema p-mediana tem

como alvo encontrar um conjunto ’p’ de facilidades que devem atender a outro conjunto ’n’ de

pontos de demanda. As facilidades devem ser escolhidas de tal forma que as distâncias entre

elas e os pontos de demanda sejam minimizadas (SILVA; MESTRIA, 2019).

É posśıvel dividir o problema em dois tipos: capacitado e não-capacitado. Neste último,

cada localização candidata possui uma capacidade não limitada. No primeiro, as localizações

em potencial possuem capacidade finita (TRAGANTALERNGSAK; RöNNQVIST, 2000).

Os problemas p-mediana são NP-hard. NP é a sigla em inglês para tempo polinomial

não determińıstico (Non-Deterministic Polynomial time), definindo a classe de problemas que

podem ser resolvidos em tempo polinomial por uma máquina de Turing não-determińıstica.

NP-hard, em complemento, define a classe de problemas que são pelo menos mais dif́ıceis que

problemas NP.

Além disso, esses problemas são de natureza combinatória. Existem várias formas para

sua solução: para problemas de pequena dimensão, podem ser utilizados métodos exatos, os

que buscam o ponto ótimo; para problemas de grandes dimensões, no entanto, não é viável

que se promova uma busca por soluções exatas devido ao tempo de processamento que tais

métodos iriam requerer (STEINER, 2003).

4.2 OUTROS ALGORITMOS ESTUDADOS

Para problemas de grande porte, devem-se buscar por soluções aproximadas. Métodos

que forneçam esses tipos de solução (que se aproximem da solução ótima) em um tempo

praticável. Mais especificamente esses problemas de grande porte podem ser solucionados

pela heuŕıstica relaxação Lagrangeana. No entanto, este método funciona bem somente para

problemas espećıficos, não demonstrando grande eficiência para casos genéricos (COSTA,

2005).

Outra tentativa para a solução de tais problemas encontra-se na metaheuŕıstica. As

principais técnicas da metaheuŕıstica são: Algoritmos Genéticos, Simulated Annealing, Particle

Swarm Optimization Variable Neighborhood Search (Busca em vizinhança variada),Chemical

Reaction Optimization(CRO), Iterated Local Search, entre outros (SILVA; MESTRIA, 2019).
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4.3 SIMULATED ANNEALING

O primeiro algoritmo implementado é o Simulated Annealing (SA), ou Recozimento

Simulado, utilizado com o objetivo de se encontrar a localização ótima global das estações. O

algoritmo traz o seu nome de uma metáfora do processo de recozimento de uma peça de metal

que no ińıcio se encontra a uma Temperatura elevada fazendo com que os átomos tenham

maior liberdade e com o tempo, conforme esfriam acabam por encontrar regiões com menor

energia (TROSSET, 2001).

Nessa técnica, escolhe-se uma solução inicial aleatória dentro do doḿınio. Em seguida,

dentro de um laço, o resultado é incrementado e comparado com novos valores obtidos da

função objetiva. Dessa forma, caso o valor seja menor do que o anterior e, portanto, melhor

posicionado no doḿınio, a nova solução é aceita. Quando um novo resultado não é menor do

que o ótimo local, ele não necessariamente será descartado. No SA, pode-se aceitar o valor

quando um número aleatório for inferior ao fator de e
−4
T . Esse fator depende do delta entre as

soluções que estão sendo comparadas e da Temperatura do sistema, a qual diminui a cada

iteração.

Dessa forma a probabilidade de se aceitarem soluções piores é maior no ińıcio das

iterações, propiciando ao código a possibilidade de rejeitar pontos de ḿınimo local, atingindo-

se com o tempo pontos de ḿınimo global. O loop do programa termina quando, após um

determinado número de iterações, não forem encontradas novas soluções melhores do que a

corrente. Vide pseudocódigo abaixo.

Algoŕıtimo ”Simulated Annealing”

N ←− numero-estacoes-inicias

X ←− posicoes-iniciais (N)

X ←− objetiva(X)

ENQUANTO num-aceitos > 0 FAÇA

num-aceitos ←− 0

num-testados ←− 0

ENQUANTO num− aceitos < iter E num− testados < iter ∗ 2 FAÇA

X ′ ←− incrementa(X)

num-testados ←− num-testados +1

SE objetiva(X ′) < objetiva(X) OU random(0,1) < ex(−4objetiva()/T )

ENTÃO

X ←− X’

num-aceitos ←− num-aceitos +1

RETORNA X
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4.4 PARTICLE SWARM OPTIMIZATION

O Particle Swarm Optimization (PSO) é um algoritmo metaheuŕıstico que consiste na

obtenção de um ponto correspondente à optimização da função objetiva por meio do uso de

um sistema de swarm (enxame) inteligente (HUDAIB; HWAITAT, 2017). Originalmente foi

desenvolvido para estudar graficamente o movimento aleatório de pássaros, criando um enxame

de part́ıculas que se relacionam entre si e com o ambiente (KENNEDY; EBERHART, 2001).

Inicialmente determina-se o número de part́ıculas que vão estar presentes no enxame e

as suas respectivas posições e velocidades iniciais. Define-se como critério de parada um número

máxima de iterações ou com um critério de erro ḿınimo da solução final. Para cada part́ıcula

presente no enxame, determina-se o erro local, assim como se avalia se essa part́ıcula, é a melhor

global, e atualiza o valor global. Após isso, percorre-se o enxame novamente, atualizando-se as

velocidades e as posições. Vide pseudocódigo abaixo baseado em (HUDAIB; HWAITAT, 2017).

A seleção da próxima posição de cada part́ıcula leva em consideração a sua velocidade

que é alterada, considerando-se a inércia da part́ıcula para alterar a velocidade anterior, a

velocidade cognitiva correspondendo ao ḿınimo local para aquela part́ıcula e uma terceira

velocidade chamada de velocidade social responsável pelo encaminhamento da part́ıcula ao

ponto de ḿınimo global obtido até o momento (KENNEDY; EBERHART, 2001).

Algoŕıtimo ”Particle Swarm Optimization”

N ←− numero-estacoes-inicias

X ←− posicoes-iniciais (N)

ENQUANTO i < Maxiterações FAÇA

PARA cada part́ıcula FAÇA

objetiva(X)

SE objetiva(X)<best.global ENTÂO

best.global ←− objetiva(X)

PARA cada part́ıcula FAÇA

atualiza.velocidade

atualiza.posição

RETORNA X

4.5 FUNÇÃO OBJETIVA

O objetivo do programa é minimizar a distância euclidiana (di(X)) entre os pontos

de demanda e as estações (j) de forma que se leve em consideração a demanda (p) de cada

região. A localização das posśıveis estações é dada pelo vetor X =(X1,..., Xp) e cada estação

Xj = (xj, yj). Levando isso em consideração estabeleceu-se a função objetiva representada pela
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seguinte equação (Eq. 1) baseada pelo artigo de Drezner et al. (2015).

F (X) =
n∑

i=1

p ∗min1≤j≤p{di(X)} (1)

4.6 Processos Estocásticos

Processos estocásticos podem ser definidos como uma série de variáveis aleatórias que

são modificadas de acordo com a passagem do tempo. A variável definida convencionalmente

por X(t) representa alguma caracteŕıstica mensurável em um sistema em operação ao longo

do tempo. Por exemplo, pode representar o número de bicicletas em uma estação de comparti-

lhamento de bicicletas a cada momento, que pode ser dimensionado de acordo com chegadas

e sáıdas de bicicletas, de forma aleatória (NOGUEIRA, 2017).

Os valores que X(t) pode assumir são denominados estados e o conjunto de estados

posśıveis são determinados por espaço de estados. A mudança de estados é um processo

estocástico, portanto, acontece de forma aleatória de acordo com as Probabilidades de Transição,

que definem qual é a chance de mudança de um estado para outro de acordo com o tempo.

Um processo estocástico pode ser classificado de diferentes maneiras:

• Quanto ao tempo: Caso o tempo dentro de um processo varie dentro dos números reais,

ele é chamado de processo estocástico de tempo cont́ınuo. Da mesma forma, se o tempo

for uma variável contável, dá-se o nome de processo estocástico em tempo discreto;

• Quanto ao espaço de estados: que, da mesma maneira, pode ser cont́ınuo ou discreto

(IBE, 2013).

4.7 Processos de Markov

Um processo Markoviano (ou Cadeia de Markov) representa um processo estocástico

no qual a mudança para um estado futuro depende somente do estado presente. Em outros

termos, trata-se de um processo estocástico sem memória.

Usualmente, um processo de Markov é definido com base em um diagrama de estados.

A Figura 1 abaixo demonstra um exemplo de uma cadeia de Markov representado um processo

com dois estados. As setas de transição indicam a possibilidade de mudança de estado, sendo

que a soma das probabilidades de transição saindo de cada estágio deve ter soma 1 (IBE,

2013).

Figura 1 – Diagrama exemplo de uma cadeia de Markov com dois estados.



Caṕıtulo 4. BASE TEÓRICA 9

4.8 Filas M/M/1

Filas M/M/1 é a denominação dada para filas que possuem somente um ponto de

atendimento, onde as chegadas são descritas por um processo de Poisson que ocorrem com

uma taxa λ; e atendimentos são descritos de acordo com uma distribuição exponencial de taxa

µ.

Essas filas são do tipo FIFO (first in, first out em inglês), que possuem a caracteŕıstica

de que o primeiro cliente a chegar na fila será o primeiro a ser servido. Em outras palavras, os

clientes são atendidos em ordem nas filas FIFO.

As filas M/M/1 podem ser modeladas como uma cadeia de Markov de acordo com o

seguinte diagrama de estados descrito na Figura 2 (NOGUEIRA, 2017).

Figura 2 – Diagrama de Markov de uma fila M/M/1 (NORRIS, 2021)

Este sistema é, portanto, descrito por uma variável aleatória X(t) que representa o

número de clientes na fila ao longo do tempo. Caso λ < µ, o sistema é considerado estável.

Isso significa que o serviço dessa fila atende numa taxa maior do que a taxa com a qual chegam

os clientes.

No estado estacionário, sendo ρ = λ/µ a probabilidade de que uma fila M/M/1 possua

i clientes é descrita por:

P (i) = (1− ρ)ρi (2)

Portanto, é posśıvel observar que as probabilidades desse tipo de fila estão distribúıdas

de forma geométrica, com parâmetro 1− ρ. Assim, tira-se que o número médio de clientes

dentro desse tipo de filas em estado estacionário é ρ/(1 − ρ), com variância de ρ/(1− ρ)2

(LIBERMAN, 2006).
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5 METODOLOGIA

O problema a ser considerado visa otimizar a localização de estações de bicicletas

compartilhadas, tendo como base a demanda de usuários em certa região. Tais informações

precisam ser obtidas nas bases públicas. Comparando-se as diferentes bases de dados, deve-se

escolher uma base de dados atualizada, relevante e com qualidade boa de dados. A escolha

deve ser cŕıtica e, para tal, deve-se explorar as bases por meio de gráficos e visualizações.

Problemas iniciais podem ser identificados dessa forma. A partir disso, serão utilizados diferentes

algoritmos para se resolver o problema das p-medianas descrito no caṕıtulo 4. Os resultados,

então, precisam ser revistos e os algoritmos, comparados entre si.

5.1 OBTENÇÃO DE DADOS NYC

As bases de dados utilizadas para treinar o modelo foram retiradas do portal de

bicicletas da empresa Citibike de Nova York (NYC, 2013) e do NYC Open Data (OPEN-DATA,

2020). Do primeiro portal, foram retirados os dados referentes as estações de ińıcio e fim do

trajeto, como localização das estações por nome, latitude e longitude, duração das viagens

entre duas estações, identificação da bicicleta que realizou o trajeto, data e hora da viagem,

idade do usuário e gênero. Do segundo, é posśıvel obter dados referentes à população em cada

bairro a fim de calcular a demanda por região.

5.1.1 COLETA E TRATAMENTO DE DADOS DA CIDADE DE NOVA IORQUE

Em uma análise inicial da base, foram feitos os seguintes tratamentos de dados da

cidade de Nova York.

Os dados foram inicialmente filtrados retirando os outliers. Para o caso em estudo o

campo referente à duração da viagem (tripduration) apresentava alguns valores muito distantes

da média padrão e por isso foram exclúıdos, como pode ser observado na Figura 3 em que se

compara a duração da viagem pela idade do usuário.
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Figura 3 – Dados de duração de viagem na cidade de Nova York por idade.

A idade do usuário acaba por não ser tão representativa na análise, uma vez que

existem muitos usuários não cadastrados utilizando o serviço, deixando os dados incompletos.

Dessa forma, tal dado apenas será utilizado comparativamente.

Os dados foram analisados para verificar a completude da base (Figura 4). Pode-se

identificar que os campos mais incompletos da base são do ano de nascimento do usuário e os

campos relacionados com a estação final, a sua localização e o seu nome. Tal problema se deve

principalmente a viagens não terminadas em que aconteceram problemas de funcionamento

durante o percurso, o que acaba por afetar o campo tripduration.

Figura 4 – Completude dos dados

Os campos numéricos da base foram normalizados em um segundo momento ficando
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entre um intervalo de 0 a 1. Dessa forma é posśıvel realizar uma análise de correlação entre os

campos, observada na imagem 5 com um gráfico de heatmap (mapa de calor).

Figura 5 – Heatmap - Correlação dos dados

Os dados sobre a latitude e longitude das estações iniciais e finais, mostram que a

maioria das viagens são realizadas em trajetos curtos.

Utilizando-se os pontos de latitude e longitude das estações iniciais e finais é posśıvel

desenhar em um gráfico real da cidade de Nova York as localizações das estações utilizadas

durante o peŕıodo estudado (Figura 6). No eixo x encontra-se a Latitude e o eixo y a Longitude.

É fácil perceber que regiões perto das linhas de metrô possuem um maior número de estações,

assim como em avenidas principais.
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Figura 6 – Estações de bicicletas compartilhadas na cidade de Nova York.

Uma análise inicial também nos trouxe os principais horários de utilização das bicicletas

Figura 7. Observa-se que os principais horários de pico ocorrem no final do dia entre às 17:00

e 19:00 horas. E o ińıcio das atividades se inicia entre às 7:00 e 8:00 horas da manhã.
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Figura 7 – Histograma dos horários de utilização das bicicletas.

5.1.2 FREQUÊNCIAS DE UTILIZAÇÃO

Após o tratamento dos dados foi posśıvel realizar a análise de frequências de sáıda e

chegada das bicicletas em cada estação, assim como a velocidade média das viagens.

Para obtenção das frequências, foram utilizados dados de 30 dias da cidade de Nova

York, observando-se, em um intervalo de uma hora, a frequência esperada de chegada e sáıda

de bicicletas em cada estação. A fim de melhor observar a movimentação de bicicletas ao longo

do dia alguns hubs foram retirados, restando apenas os que estivessem a pelo menos 1 km de

distância entre-si, sobrando apenas 28 estações. Elas estão marcadas marcadas com pontos

azuis e podem ser observadas na Figura 8.
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Figura 8 – Śıntese das estações (em azul).

Com a finalidade de se obter a velocidade média de cada viagem, considerou-se que a

movimentação ocorreu em linha reta, e a distância foi calculada com base na diferenças de

latitude e longitude das estações de ińıcio e fim (Eq. 3 e 4 ). Em que lat2 e lat1 correspondem

as latitudes dos dois pontos e lon2 e lon1 as respectivas longitudes, R representa o raio da

terra em km.

α = sin2(
(lat2 − lat1)π

180
) + cos(

lat1π

180
)× cos(

lat2π

180
)× sin2(

(lon2 − lon1)π

180
) (3)

Distancia(m) = 2R× 1000 arctan(
√
α,
√

1− α);R = 6378.137(km) (4)
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Os resultados das distâncias médias percorridas, duração e velocidade média em cada

viagem, podem ser observados nas Figuras 9, 10 e 11. Dos gráficos podemos observar que

distâncias de até 3 km (80% da distribuição) e, consequentemente, tempos de viagem de até

30 minutos (80%) são prefeŕıveis entre os usuários. Da mesma forma, conforme a Tabela 1,

vemos que, embora o desvio padrão do tempo de viagens seja elevado, a média da velocidade

se manteve em 2.47 m/s com um desvio padrão de 1.74 m/s. Esses valores foram utilizados em

uma distribuição normal para fazer previsões de viagens na cidade de Nova Iorque que serão

apresentadas na seção 6.1.

Figura 9 – Histograma das distâncias médias das viagens na ilha de Manhattan.

Figura 10 – Histograma das durações das viagens na ilha de Manhattan.
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Figura 11 – Histograma das velocidades médias das viagens na ilha de Manhattan.

Tabela 1: Médias e Desvio Padrão para as grandezas observadas.

Média Desvio Padrão

Distância (m) 2216.2315 1556.9304

Duração (s) 1395.3479 9424.6224

Velocidade (m/s) 2.4666 1.7354

5.1.3 MODELAGEM DAS ESTAÇÕES COMO FILAS M/M/1

As estações de bicicleta podem ser modeladas como filas M/M/1. de acordo com

o modelo descrito no caṕıtulo 4.8, as frequências de chegada e de sáıda de bicicletas das

estações podem ser representadas pelas taxas de chegada de clientes e de serviço nas filas: λ e

µ, respectivamente.

Caso a frequência de chegada seja maior do que a frequência de sáıda, a fila é

considerada instável, e, para valores de tempo muito grandes, ela crescerá indefinidamente. Em

contrapartida, para filas estáveis (onde a frequência de sáıda é maior do que a frequência de

chegada), pode ser calculado o valor médio de clientes dentro delas, no estado estacionário.

O gráfico 12 pontua qual é a quantidade de estações estáveis e instáveis. Observa-se

que 45,95% das estações são estáveis.
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Figura 12 – Estabilidade das estações.

5.1.4 COLETA DE DADOS DA UNIVERSIDADE DE SÃO PAULO

A fim de estabelecer as estações de bicicletas e simular a movimentação dos usuários

dentro do campus da cidade de São Paulo utilizou-se o Anuário da USP do ano de 2020 (USP,

2020) para se obter os principais pontos de demanda da universidade, conforme observado na

Tabela 2.

Além dos dados da universidade também foram retiradas as posições de latitude e

longitude de cada unidade para estabelecimento dos pontos de demanda dentro do campus.
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Tabela 2: Comunidade USP segmentada por Unidade no ano de 2020.(USP, 2020)

Cidade Universitá-
ria ”Armando de
Salles Oliveira”

Recursos
Humanos

Graduação Pós-
Graduação

Total de
Pessoas

CEPEUSP 121 0 0 121

ECA 359 2256 1213 3828

EDUSP 52 0 0 52

EEFE 132 501 167 800

EP 802 5246 2584 8632

FAU 243 1336 880 2459

FCF 217 926 406 1549

FE 244 946 720 1910

FEA 239 3013 817 4069

FFLCH 705 9131 3661 13497

FMVZ 351 477 636 1464

FO 301 760 395 1456

HU 1331 0 0 1331

IAG 181 302 281 764

IB 284 763 515 1562

ICB 419 189 650 1258

IEA 26 0 0 26

IEB 54 0 118 172

IEE 146 0 310 456

IF 373 1294 312 1979

IGc 160 439 285 884

IME 278 1633 928 2839

IO 163 220 162 545

IP 198 413 971 1582

IPEN 0 0 805 805

IQ 300 758 488 1546

IRI 45 308 148 501

MAC 88 0 0 88

MAE 65 0 131 196

NAIPE 0 0 0 0

PUSP-C 159 0 0 159

PUSP-CL 7 0 0 7

RUSP 1170 0 0 1170
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5.2 ALGORITMOS UTILIZADOS

Foram utilizados para análise os algoritmos Particle Swarm Optimization (KENNEDY,

1995) e Simulated Annealing (KIRKPATRICK; JR.; VECCHI, 1983) determinando a eficiência

de cada algoritmo.

Com isso pretendeu-se obter novas localizações de estações de bicicletas compartilhadas

nas regiões estudadas e analisar a eficácia delas.

5.3 VALIDAÇÃO DO ALGORITMO

A fim de validar o algoritmo, retirou-se dados públicos da cidade de Nova York, assim

como os utilizados anteriormente só que dessa vez relacionados com a população da Ilha de

Manhattan. O estudo dividiu inicialmente a ilha em 29 Neighborhood Tabulation Areas (NTA,

2010) e a respectiva população de cada área. Com isso, foi posśıvel modelar 29 pontos de

demanda com as localizações determinadas por latitude e longitude e também um fator de

peso para cada ponto com base na quantidade de residentes por região. Os pontos selecionados

da cidade podem ser observados na Figura 13. Uma segunda abordagem utilizando os dados

do Census de 2020 (CENSUS, 2020) dividindo a ilha em 283 segmentos pode ser observada na

Figura 14. Ambos segmentos foram utilizados no teste do algoritmo e na obtenção das novas

posições de estações.
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Figura 13 – Áreas populacionais da cidade de Nova York (NTA).
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Figura 14 – Áreas populacionais da cidade de Nova York (Census 202).
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5.4 PROCESSING

Processing é um software open source criado em 2001, que utiliza um ambiente

de desenvolvimento integrado (IDE) direcionado à criação de artes visuais em duas ou três

dimensões. Uma de suas grandes vantagens é a utilização de linguagens de programação já

conhecidas e largamente difundidas, tais como JavaScript e Python. A utilização do programa

consiste em duas funções principais, uma chamada setup(), em que se inicializam as variáveis,

assim como o tamanho da janela gráfica e o framerate da animação. Na outra função draw(),

colocam-se os códigos responsáveis por realizar os desenhos e cores da animação a cada

framerate. Nas simulações utilizou-se o Processing 3.5.4 no ambiente de programação em

Python 2.7 (FRY; REAS, 2001).
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6 ANÁLISE E DISCUSSÃO DOS RESULTADOS

Serão tratados nesse caṕıtulo os resultados referentes às localizações das estações

obtidas pelos algoritmos Simulated Annealing e Particle Swarm Optimization tanto na ilha de

Manhattan quanto na cidade universitária ”Armando de Salles Oliveira”. As entradas dos dois

algoritmos são os pontos de demanda respectivos estabelecidos no Caṕıtulo 5. Alinhado com a

criação das estações também foram realizadas simulações do deslocamento de usuários em

cada região.

6.1 SIMULATED ANNEALING E PARTICLE SWARM OPTIMIZATION PARA MANHATTAN

Tabela 3: Comparação dos métodos utilizados (SA e PSO).

SA PSO

Entradas

Nº de estações 75 75

Nº iteração Máxima - 10000

Nº Aceites Máximo 3000 -

Nº Avaliados Máximo 6000 -

Fator de Cristalização máximo 40 -

Temperatura Inicial 0.1 -

Nº de part́ıculas - 1000

W (Constante de inércia) - 0.1

c1 (Constante cognitiva) - 2.5

c2 (Constante social) - 3

Critério de parada Nº Aceites = 0 Nº iteração Máxima

OU

Atual/Melhor < 0.99

Comparações

Tempo de processamento (s) 180205.97 9457,84

Nº de iterações 804 109

Solução função objetiva 0.0367898 0.0505179

∆ Reśıduo 0.0137281

Utilizando-se os pontos de demanda da seção 5.3, mostrados na Figura 13 e os inputs

dos programas apresentados na Tabela 3 conseguimos utilizar os códigos SA e PSO para o caso

da ilha de Manhattan. Considerando-se que a área total da ilha de Manhattan corresponde

à 59.1 km2 e que, de acordo com o observado na seção 5.1.2, a moda da distância está

aproximadamente em 1km podemos calcular o número de estações necessárias supondo uma
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área circular de 1 km de diâmetro de atuação de cada estação. Dessa forma, obtemos que

seriam necessárias, aproximadamente, 75 estações. A fim de confirmar essa hipótese inicial

foram feitas diversas iterações com quantidades diferentes de estações, de 1 a 75, onde foram

calculadas as distâncias máximas a serem percorrida por uma pessoa (Figura 15). Pode-se

observar que posicionando estações de forma inteligente a distância cai rapidamente. Com 75

estações obteve-se uma distância máxima de 1006.49 metros.

Figura 15 – Distância máxima percorrida por um usuário por quantidade de estações.

A Figura 16 a seguir representa as posições das estações no SA e no PSO. Em vermelho

estão os pontos criados pelo PSO e em azul as estações criadas pelo SA. Como era de se

esperar as áreas mais povoadas apresentaram uma concentração maior de estações.
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Figura 16 – Estações obtidas pelos métodos SA (em azul) e PSO (em vermelho).

Além das posições finais, é interessante estudar a procura dos melhores pontos realizada
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pelo algoritmo. Conforme a Figura 17, pode-se ver como que as coordenadas de uma estação

se alteram ao longo das iterações. No ińıcio do recozimento, enquanto a temperatura ainda

está elevada, as estações costumam explorar todo doḿınio das abscissas e ordenadas de forma

a minimizar o resultado da função objetiva e por conta do fator de aleatoriedade contido no

algoritmo do SA em que para temperaturas elevadas existe uma chance maior de aceitar um

resultado superior ao anterior (Apêndice B). À medida que a temperatura diminui, os pontos

da estação deixam de explorar e passam a refinar as respectivas posições, até encontrarem por

fim o ḿınimo global.

Figura 17 – Posição nas abscissas e ordenadas de uma estação a cada temperatura (escala
logaŕıtmica).

Um resultado semelhante acontece para os valores da função objetiva apresentados

nas Figuras 18 e 19. Enquanto a temperatura está elevada é normal que soluções não ótimas

sejam aceitas, ocasionando os pontos de máximo da figura. Conforme a temperatura diminui,

a função converge para o ponto de ḿınimo.
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Figura 18 – Valores da função objetiva pela temperatura
(log) .

Figura 19 – Máximo, ḿınimo e média da função objetiva
pela temperatura

O fator de cristalização também pode ser observado ao longo das iterações nas Figuras

20 e 21. Conforme o número de rejeitados aumenta, o fator de cristalização em cada eixo tende

a aumentar, garantindo um refino maior da solução final.
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Figura 20 – Fator de cristalização para o eixo x da esta-
ção.

Figura 21 – Fator de cristalização para o eixo y da esta-
ção.

O critério de parada para o SA ocorre quando o número de opções aceitas chega a zero

dentro de um espaço de opções avaliadas, portanto, espera-se que o algoritmo tenha atingido

o ḿınimo global nesse momento. As Figuras 22 e 23 retratam que, no ińıcio, praticamente

todas soluções são aceitas e conforme a temperatura diminui algumas soluções são rejeitadas,

aumentando a quantidade de soluções avaliadas.
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Figura 22 – Quantidade de soluções avaliadas ao longo
das iterações.

Figura 23 – Quantidade de soluções aceitas ao longo das
iterações.

No caso do PSO, a única forma de se aceitar um novo resultado é quando o resultado

testado possui um valor inferior ao global. Por conta disso o gráfico da função objetiva é

decrescente (Figura 24) e tende a convergir de forma mais rápida do que o SA.

Uma consequência desse algoritmo é a tendência de serem aceitos ḿınimos locais,

ao invés de ḿınimos globais. No problema em questão, podemos observar que os valores da

função objetiva acabam por ser ligeiramente diferentes e a posição das estações estão mais

distantes umas das outras em alguns casos.
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Figura 24 – Valores da função objetiva para cada iteração.

Essa caracteŕıstica pouco exploratória do PSO se reflete nas posições das posśıveis

estações ao longo das iterações do programa. Como podemos observar na Figura 25, as

coordenadas dessa estação em cada iteração alteraram pouco quando comparadas com as do

método SA (Figura 17) e também convergiram a um ponto de maneira muito mais rápida.

Figura 25 – Posição nas abscissas e ordenadas de uma estação ao longo das iterações do
programa PSO.

6.2 NÚMERO DE BICICLETAS POR ESTAÇÃO

Por meio dos dados de frequência de utilização da ilha de Manhattan foi posśıvel fazer

simulações a fim de obter a quantidade inicial ideal de bicicletas em cada estação, assim como

a quantidade total de slots para um peŕıodo de utilização de 24 horas.
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Por meio de um processo iterativo, estações onde haviam lotações ou falta de bicicletas

tiveram seu número inicial incrementado ou reduzido em lotes de 5 bicicletas. Esse processo foi

então repetido até que as estações pudessem suportar um dia em operação sem que houvesse

problemas de falta ou sobrecarga. Com isso, numa situação prática, as estações somente

precisariam ser reabastecidas ou remanejadas uma vez por dia, por volta das 05:00 da manhã o

qual é um horário de pouqúıssimo uso (Figura 7). Os resultados para cada estação podem ser

observados nas tabelas abaixo para Manhattan (Tabela 4) e para USP (Tabela 5).
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Tabela 4: Disposição das bicicletas por estação em Manhattan.

Nº Estação Qtd. Ḿınima Qtd. Total Nº Estação Qtd. Ḿınima Qtd. Total

1 15 25 39 20 30

2 20 30 40 25 35

3 20 30 41 20 30

4 20 30 42 20 30

5 25 35 43 25 35

6 20 30 44 25 35

7 20 30 45 25 35

8 15 25 46 15 25

9 20 30 47 25 35

10 25 35 48 25 35

11 20 30 49 15 25

12 25 35 50 25 35

13 20 30 51 15 25

14 25 35 52 25 35

15 25 35 53 25 35

16 25 35 54 25 35

17 15 25 55 20 30

18 25 35 56 30 55

19 30 40 57 15 25

20 25 35 58 10 20

21 25 35 59 15 25

22 15 25 60 15 25

23 20 30 61 20 30

24 30 40 62 25 35

25 25 35 63 15 25

26 25 35 64 30 50

27 20 30 65 20 30

28 20 30 66 20 30

29 20 30 67 15 25

30 25 35 68 20 30

31 20 30 69 25 35

32 20 30 70 25 35

33 10 20 71 20 30

34 15 25 72 25 35

35 25 35 73 30 40

36 20 30 74 20 30

37 25 35 75 20 30

38 20 30
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Tabela 5: Disposição das bicicletas por estação na USP.

Nº Estação Qtd. Ḿınima Qtd. Total

1 25 35

2 25 35

3 30 40

4 35 45

5 20 30

6 10 20

7 25 35

8 20 30

9 15 25

10 30 40

11 20 30

12 10 20

13 20 30

14 10 20

15 30 40

16 30 40

17 35 45

18 15 25

6.3 SIMULAÇÃO PROCESSING PARA MANHATTAN

Possuindo as posições das estações obtidas com os métodos anteriores, as frequências

de uso nas estações e a distribuição normal de velocidade das viagens, é posśıvel simular as

viagens dentro da ilha de Manhattan, como pode ser observado na Figura 26 abaixo.

Utilizaram-se as estações obtidas pelo SA para o caso. Inicialmente foram feitas

simulações com quantidades infinitas de bicicletas por estação e capacidade infinita. Ao longo

das simulações, foi posśıvel refinar o número de bicicletas e a capacidade para cada estação.

Cada ćırculo vermelho, preenchido estático no mapa, representa uma estação, e o

número logo acima, a quantidade de bicicletas na estação a cada momento. Os ćırculos menores

representam bicicletas em viagem.

Na Figura 26, está representada uma simulação de uma hora, em que cada estação

tem uma probabilidade de enviar uma bicicleta a cada minuto de acordo com a frequência

obtida. Existem, portanto, momentos em que nenhuma bicicleta parte da estação, sendo cada

simulação única. Como podem sair bicicletas até o último minuto, a simulação pode ultrapassar

o tempo de uma hora. Também foram feitas simulações de 10 horas, sabendo que existissem

bicicletas em todas estações a todo momento. Para visualizar clique aqui, ou acesse pelo

seguinte link: <https://youtu.be/dMB6ZW36Esc>.

https://youtu.be/dMB6ZW36Esc
https://youtu.be/dMB6ZW36Esc
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Figura 26 – Ińıcio da Simulação de uma hora utilizando o Processing.
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Figura 27 – Fim da Simulação de uma hora utilizando o Processing.

6.4 SIMULATED ANNEALING E PARTICLE SWARM OPTIMIZATION PARA USP

No caso da cidade universitária, foram feitas as simulações de acordo com os pontos

de demanda da Tabela 2, para pontos com número relevantes de usuários. Foram, igualmente,

adicionados pontos de demanda (Figura 28) na entrada da CPTM, que se encontra perto do

Portão 1, e no bandejão central devido à demanda em horários espećıficos de entrada, e de

sáıda e de refeições, respectivamente.
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Figura 28 – Pontos de demanda estabelecidos para o campus da USP em azul.

O projeto da USP é diferente do de Nova York, pois deseja-se obter um número de

estações suficientes para a alta demanda da USP concentrada principalmente nos horários de

pico, e em regiões espećıficas. Foram utilizadas 18 estações para as simulações dos algoritmos,

o qual é o mesmo número de estações já presentes no campus.

Observando o gráfico que adicionando 18 estações obtém-se uma distância de 673

metros (Figura 29). Isso quer dizer que no máximo uma pessoa terá que andar 673 metros para

chegar em uma estação. Portanto optou-se por manter 18 estações garantindo a otimização de

quantidade de estações pela região, evitando um acúmulo de estações de forma desnecessária.

Figura 29 – Distância máxima percorrida por quantidade de estações.
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Tabela 6: Comparação dos métodos utilizados para USP (SA e PSO).

SA PSO

Entradas

Nº de estações 18 18

Nº iteração Máxima - 1000

Nº Aceites Máximo 720 -

Nº Avaliados Máximo 1440 -

Fator de Cristalização máximo 40 -

Temperatura Inicial 10 -

Nº de part́ıculas - 3000

W (Constante de inércia) - 0.1

c1 (Constante cognitiva) - 2.5

c2 (Constante social) - 3

Critério de parada Nº Aceites = 0 Nº iteração Máxima

OU

Atual/Melhor < 0.99

Comparações

Tempo de processamento (s) 1351.63 304.25

Nº de iterações 931 90

Solução função objetiva 0.00089187 0.00181476

∆ Reśıduo 0.00092289

Podemos observar pela Tabela 6 e pela Figura 30 que os resultados, utilizando-se o

método do SA, foram mais precisos do que quando empregando o método do PSO, mesmo

que esse seja mais rápido e menos computacionalmente custoso. Os gráficos de exploração e

refino mostrados para Manhattan são muito semelhantes aos obtidos para USP, uma vez que

retratam o funcionamento dos algoritmos e por isso não foram adicionados novamente nesta

seção.
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Figura 30 – Estações definidas pelo SA (azul) e PSO (vermelho).

6.5 SIMULAÇÃO PROCESSING PARA USP

A simulação foi feita com base em um dia útil da universidade com ińıcio às 6 horas

da manhã e término às 20 horas, considerando-se que nesse instante quase todos cursos já

encerraram as suas atividades e a demanda pelas bicicletas após esse horário é bem escassa.

Para ver o v́ıdeo clique aqui, ou acesse pelo seguinte link: <https://youtu.be/4OJPrSjMzlo>.

As frequências de utilização em cada estação foram retiradas da ilha de Manhattan,

uma vez que foi feito uma aproximação da demanda considerando a quantidade de pessoas nos

pontos de demanda comparativamente com os das bases de estudo.

Utilizando a função objetiva especificada anteriormente (Eq. 1), com as estações da

Tembici obtivemos um resultado de 0.00467201, um valor aproximadamente cinco vezes maior

do que pelo SA. Comparando-se as localizações das estações (Figura 31) podemos ver que nas

regiões com maior quantidade de alunos, como a Avenida Luciano Gualberto, existem mais

estações. Nas regiões situadas nas extremidades do campus, como na Avenida Professor Lineu

Prestes, o número de estações diminui consoante a redução de cursos universitários situados

próximos a esse local.

https://youtu.be/4OJPrSjMzlo
https://youtu.be/4OJPrSjMzlo
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Figura 31 – Estações definidas pelo SA (azul) e estações da Tembici (vermelho).

Realizando uma comparação com os números de bicicletas em cada estação ao final

do peŕıodo de utilização, com as mesmas frequências utilizadas para as estações mais próximas

obtidas no SA anteriormente e mantendo o limite máximo de slots presentes nas estações da

Tembici obtivemos o resultado mostrado na Figura 32. Pode-se perceber que as estações de

maiores demanda, como as entradas da universidade apresentam valores negativos ou nulos,

mostrando que para essa simulação faltaram bicicletas livres nas respectivas estações.
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Figura 32 – Resultado final da simulação para a Tembici.
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7 CONCLUSÃO

O problema de localização de estações de bicicletas compartilhadas é de grande

relevância para o transporte urbano de grandes cidades e está em linha com as medidas

sustentáveis adotadas em diversos páıses, diminuindo a lotação de ruas, trazendo maior rapidez

para transporte de pequenas distâncias, reduzindo a emissão de gases de efeito estufa, reduzindo

a poluição sonora e disponibilizando um elemento de lazer individual e coletivo.

Em um primeiro momento, obtiveram-se dados abertos referentes ao sistema de

transporte de bicicletas da cidade de Nova York, assim como os dados sobre a população dos

bairros da cidade. Com isso, já foi posśıvel modelar o problema, utilizando-se os algoritmos

mencionados anteriormente, de resolução do problema de p-mediana.

Foram utilizados dois algoritmos para obtenção das localizações das estações. O SA

apresentou resultados superiores ao PSO, com um valor de reśıduo inferior e com melhor

distribuição das estações tanto para o caso de Manhattan quanto para a USP. Entretanto, ele

teve oito vezes mais iterações e um tempo vinte vezes superior ao PSO, mostrando um custo

computacional elevado. Tendo em vista os altos ńıveis de exploração mostrados no SA e a

habilidade de evitar pontos de ḿınimo locais esse foi o escolhido, obtendo-se 75 estações para

a ilha de Manhattan e 18 para a cidade universitária da USP.

Após termos obtido as localizações das estações, foi feita uma simulação gráfica de

uma posśıvel utilização das bicicletas em cada estação, por meio das frequências extráıdas das

bases de dados. Com essa simulação, foi posśıvel observar e corrigir estações que poderiam

ficar sem bicicletas e outras que, ao contrário, estariam superlotadas impedindo a devolução.

Foram realizadas simulações de Manhattan de uma e de dezessete horas, enquanto

que para a USP tivemos simulações de uma e catorze horas, além da simulação das estações já

existentes da Tembici.

Analisando os resultados das simulações realizadas, também foi posśıvel fazer uma

estimativa do número de bicicletas ideal para cada uma das estações. Em estações com

problemas de lotação ou de falta de bicicletas, seus números de bicicletas foram atualizados

em um processo iterativo, a fim de reduzir tais dificuldades.

Os algoritmos testados poderiam ser utilizados na implementação de novos sistemas

de bicicletas compartilhadas. Aliados a pesquisa e a uma sólida base de dados, eles poderiam ser

essenciais para redução de estações inutilizadas e redundantes, ou na previsão de estações com

problemas de superlotação. Mais do que corrigir erros encontrados, esse sistema de otimização

visa a prevenção de erros na implementação de sistemas similares em outras regiões ou cidades.
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//www.sciencedirect.com/science/article/pii/S0967070X17305322>. Citado na página 3.

CENSUS. New York City 2020 CENSUS. 2020. Dispońıvel em: <https://www.census.gov/
geographies/mapping-files/time-series/geo/tiger-line-file.2020.html>. Acesso em: 20 de julho
de 2021. Citado na página 20.

CHIBWE, J. et al. An exploratory analysis of the trend in the demand for the london bike-sharing
system: From london olympics to covid-19 pandemic. Sustainable Cities and Society, v. 69,
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APÊNDICE A – Tratamento Inicial dos Dados

Código referente à análise e tratamento inicial dos dados retirados da cidade de Nova

Iorque.

import pandas as pd

import matplotlib.pyplot as plt

import os

import io

import numpy as np

import pandas as pd

import matplotlib.pyplot as plt

import missingno as mn

import seaborn as sns

from sklearn import preprocessing

#Data from NYC

df2 = pd.read_csv("dados.csv")

columns=[’tripduration’,’start_station_id’,’start_station_latitude’,

’start_station_longitude’,’end_station_id’,’end_station_latitude’,

’end_station_longitude’,’bikeid’,’birth_year’,’gender’]

x = df2[columns] #returns a numpy array

min_max_scaler = preprocessing.MinMaxScaler()

x_scaled = min_max_scaler.fit_transform(x)

df3 = pd.DataFrame(x_scaled,columns=columns)

df3.head()

# checking for incompletness of data

mn.matrix(df2.sample(500), figsize=(10,6))

#Dendrogram

mn.dendrogram(df2, figsize=(10,6))

mn.bar(df2, figsize=(10,6))

#histograms
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df2.hist(bins=50, figsize=(20,15))

#heatmap and correlation

sns.heatmap(df3.corr());

df2.corr()

#Finding Outliers

sns.set_context("notebook", font_scale=1.1)

sns.set_style("ticks")

sns.lmplot(’birth_year’, ’tripduration’,

data=df2,

fit_reg=True,

scatter_kws={"marker": "D",

"s": 10})

plt.show()

def get_iqr_values(df_in, col_name):

median = df_in[col_name].median()

q1 = df_in[col_name].quantile(0.25) # 25th percentile / 1st quartile

q3 = df_in[col_name].quantile(0.75) # 7th percentile / 3rd quartile

iqr = q3-q1 #Interquartile range

minimum = q1-1.5*iqr

# The minimum value or the |- marker in the box plot

maximum = q3+1.5*iqr

# The maximum value or the -| marker in the box plot

return median, q1, q3, iqr, minimum, maximum

def get_iqr_text(df_in, col_name):

median, q1, q3, iqr, minimum, maximum = get_iqr_values(df_in, col_name)

text = f"median={median:.2f}, q1={q1:.2f}, q3={q3:.2f},

iqr={iqr:.2f}, minimum={minimum:.2f}, maximum={maximum:.2f}"

return text

def remove_outliers(df_in, col_name):

_, _, _, _, minimum, maximum = get_iqr_values(df_in, col_name)

df_out = df_in.loc[(df_in[col_name] > minimum) & (df_in[col_name] < maximum)]

return df_out

def count_outliers(df_in, col_name):
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_, _, _, _, minimum, maximum = get_iqr_values(df_in, col_name)

df_outliers = df_in.loc[(df_in[col_name] <= minimum) |

(df_in[col_name] >= maximum)]

return df_outliers.shape[0]

def box_and_whisker(df_in, col_name):

title = get_iqr_text(df_in, col_name)

sns.boxplot(df_in[col_name])

plt.title(title)

plt.show()

# removendo outliers segundo a regra dos quartis

box_and_whisker(df2, ’tripduration’)

print(f"tripduration has {count_outliers(df2, ’tripduration’)} outliers")

df2 = remove_outliers(df2, ’tripduration’)

box_and_whisker(df2, ’tripduration’)

sns.set_context("notebook", font_scale=1.1)

sns.set_style("ticks")

sns.lmplot(’birth_year’, ’tripduration’,

data=df2,

fit_reg=True,

scatter_kws={"marker": "D",

"s": 10})

plt.show()
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APÊNDICE B – Código Simulated Annealing

Código possui duas entradas diferentes, uma para o caso da ilha de Manhattan e outra

para a USP.

#Módulos importados

import pandas as pd

from numpy import exp

from numpy.random import randn

from numpy.random import rand

from numpy.random import seed

from matplotlib import pyplot as plt

import numpy as np

import random

import time

from __future__ import division

import math

import copy # array-copying convenience

import sys # max float

#Funç~oes auxiliares

# objective function

def objective(x, y, pontos_demanda):

’’’ Funç~ao objetiva do algoritmo de SA. Recebe três vetores contendo os

pontos de demanda da regi~ao que está sendo estudada,

as posiçoes x e y de cada ponto que foi determinado pelo algoritmo de SA.

Ela retorna a soma que corresponde à soma do mı́nimo entre às distâncias dos

pontos do algoritmo e dos pontos de demanda.

Também é retornado o vetor de todas distâncias para análise.

’’’

soma=0

dist2=[]

for n in range(len(pontos_demanda)):

#para cada ponto de demanda verifca-se todos pontos criados pelo algoritmo

dist=[]

for i in range(len(x)):

dist.append(euclidean(x[i],y[i],pontos_demanda[n][0],pontos_demanda[n][1]))

soma+=min(dist)*pontos_demanda[n][2]
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dist2.append(dist)

return soma,dist2

def euclidean(ai,aj,bi,bj):

’’’

Funç~ao que retorna a distância euclidiana entre dois pontos em um espaço 2d.

As entradas s~ao as posiç~oes x e y (i e j) de dois pontos a e b.

’’’

return np.sqrt((ai-bi)**2 + (aj-bj)**2)

#Rever se precisa

def normalize(x):

’’’ funç~ao para normalizar os pesos dos pontos de demanda.

’’’

novo=0

for i in range(len(x)):

novo+=x[i]**2

xnovo=x/np.sqrt(novo)

return xnovo

def valores_iniciais(N_stations,bounds,best):

’’’Funç~ao responsável por gerar de forma aleatória o vetor com

as estimativas dos pontos iniciais do SA.

Recebe o número de estaç~oes que ser~ao geradas, um vetor com os limites

em latitude e longitude da regi~ao estudada e um vetor vazio best.

’’’

best2=best.copy()

for p in range(N_stations):

#escolhe um x e m y de maneira randomica

#desde que esteja dentro dos limites de latitude e longitude

best2[0][p]=np.float64(random.randrange(round(bounds[0][0]*1000000),

round(bounds[0][-1]*1000000))/1000000).item()

best2[1][p]=np.float64(random.randrange(round(bounds[1][0]*1000000),

round(bounds[1][-1]*1000000))/1000000).item()
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return best2

def normalize(x):

’’’ Funç~ao para normalizar os pesos em cada ponto de demanda.

’’’

novo=0

for i in range(len(x)):

novo+=x[i]**2

xnovo=x/np.sqrt(novo)

return xnovo

def soma_valores(best,step_size,bounds,c):

’’’

Nessa funç~ao acontece a atualizaç~ao dos valores obtidos no algoritmo.

recebemos o vetor best com as posiç~oes atuais do SA que foram aceitas,

o step_size para determinar o acrescimo na posiç~ao de cada ponto,

vetor com os limites da regi~ao, bound

e o vetor c com o fator de cristalizaç~ao.

Retorna o novo vetor best2 com os novos valores a serem testados pelo algoritmo,

p indicando qual foi alterado e axis indicando se foi no eixo x ou y.

’’’

best2=np.copy(best)

Nx=0.0

Ny=0.0

if random.random() < 0.5:

#Se for menor do que 0.5 escolhemos atualizar o eixo x.

axis = 0 #indicaç~ao do eixo x.

p = random.randrange(len(best[0])) #escolha do valor a ser atualizado

while True:

Nx = 0

for i in range(c[2*p]):

Nx += random.uniform(-1,1)

best2[0][p]=np.float64(best[0][p]+Nx*step_size[0]/c[2*p]).item()

#atualizaç~ao do valor.

if best2[0][p] >= bounds[0][0] and best2[0][p] <= bounds[0][-1]:

#caso esteja fora dos limites refaz a atualizaç~ao.
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break

else: #se random>0.5 esoclhemos atualizar o eixo y.

axis = 1

p = random.randrange(len(best[1]))

while True:

Ny = 0

for i in range(c[2*p+1]):

Ny += random.uniform(-1,1)

best2[1][p]=np.float64(best[1][p]+Ny*step_size[1]/c[2*p+1]).item()

if best2[1][p] >= bounds[1][0] and best2[1][p] <= bounds[1][-1]:

break

return best2, p, axis

#funç~ao principal

def simulated_annealing(objective, bounds, step_size, temp,N_stations,best):

’’’ Funç~ao principal do simulated_annealing onde acontecem as inicializaç~oes

dos pontos, atualizaç~oes e determina os melhores pontos.

Recebe os limites da regi~ao, o step_size do incremento, a temperatura do

recozimento, número de estaç~oes e um vetor vazio best.

Retorna principalmente os melhores pontos correntes "current" e a soma da funç~ao

objetiva desses pontos "current_eval",

além de demais vetores que s~ao utilizados para plotagem de gráficos para

verificar o funcionamento do algoritmo.

’’’

#valores iniciais e inicializaç~ao de vetores para extraç~ao de dados.

num_accepted = 1

num_evaluated = 0

x = []

f = []

dist2=[]

#vetores para análise do funcionamento do código

temp2=[]

num_accepted2=[]

num_evaluated2=[]

c2=[]
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# gera o ponto inicial

best = valores_iniciais(N_stations,bounds,best)

# inicializa o vetor com fator de cristalizaç~ao com uns.

c=2*N_stations*[1]

# avalia o ponto inicial

best_eval,dist = objective(best[0], best[1], pontos_demanda)

# determina a soluç~ao corrente

curr, curr_eval = best, best_eval

# Roda o código. Termina quando n~ao encontra nenhuma outra soluç~ao aceita.

while num_accepted > 0:

temp2.append(temp)

num_accepted2.append(num_accepted)

num_evaluated2.append(num_evaluated)

num_accepted = 0

num_evaluated = 0

#Analisa no máxima N_stations*40 resultados aceites ou

#N_stations*80 resultados avaliados.

while num_accepted < N_stations*20*2 and num_evaluated < N_stations*40*2:

# Aualizaç~ao do ponto anterior

candidate, p, axis = soma_valores(curr,step_size,bounds,c)

num_evaluated += 1

# Obtém a distância do ponto atualizado.

candidate_eval,dist = objective(candidate[0],candidate[1],pontos_demanda)

# Determina a diferença entre o ponto candidato e o ponto corrente.

diff = (candidate_eval - curr_eval)

# Calcula a temperatura

t = temp

# calcula o fator de metropolis.

metropolis = exp(-diff / t)

# Verifica se devemos aceitar o novo ponto

if diff < 0 or rand() < metropolis:

num_accepted += 1

if c[2*p + axis]>5:
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c[2*p + axis] = round(c[2*p + axis]/10)

c3=np.copy(c)

# Aceita o novo ponto.

curr, curr_eval = candidate, candidate_eval

else:

#caso n~ao aceite, aumenta o fator de cristalizaç~ao do ponto.

if c[2*p + axis] < 40:

c[2*p + axis] += 1

c3=np.copy(c)

c2.append(c3)

f.append(curr_eval)

#atualizaç~ao da temperatura do recozimento

temp = temp*0.98

x.append(curr)

return [curr, curr_eval, x, f,temp2,c2,num_accepted2,num_evaluated2]

#condiç~oes iniciais para funcionamento do SA.

#numero de estaç~oes

N_stations= 18

#Vetor vazio para armanezar os pontos obtidos do SA.

best= [[0 for col in range(N_stations)] for row in range(2)]

#cria pontos de demanda da USP com base no arquivo csv inputado.

#Transforma o dataframe em lista e insere em um novo vetor

#pontos_demanda para realizar uma cópia.

demanda_lat=df[’latitude’].to_list()

demanda_long=df[’longitude’].to_list()

demanda_pop=normalize(df[’Population’].to_list())

pontos_demanda=np.zeros((len(demanda_long),3))

for j in range(len(demanda_long)):
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pontos_demanda[j][1]=demanda_lat[j]

pontos_demanda[j][0]=-demanda_long[j]

pontos_demanda[j][2]=demanda_pop[j]

# seed para o gerador de números pseudoaleatórios.

seed(1)

# define o limite da regi~ao que está sendo tratada.

bounds=[[-df.longitude.max(),-df.longitude.min()],

[df.latitude.min(),df.latitude.max()]]

# definiç~ao do step_size máximo

step_size = [bounds[0][-1]-bounds[0][0],bounds[1][-1]-bounds[1][0]]

# temperatura inicial.

temp = 10

# performa-se o algoritmo de SA, iniciando o tempo para análise futura.

start_time = time.time()

best, score,x,f_SA,temp,crist,NA,NE =

simulated_annealing(objective, bounds, step_size, temp,N_stations,best)

tempo_SA= (time.time() - start_time)

print(’Done!’)

print(’f(%s) = %f’ % (best, score))

#plota-se um gráfico com os pontos de demanda e

#os pontos obtidos pelo SA para análise.

best2 = [i * -1 for i in best[0]]

plt.scatter(best2,best[1],marker="+")

pd_x=[]

pd_y=[]

for i in range(len(pontos_demanda)):

pd_x.append(-pontos_demanda[i][0])

pd_y.append(pontos_demanda[i][1])

plt.scatter(pd_x,pd_y,marker="o")

plt.show()

#Entrada para USP

#importaç~ao da base de pontos de demanda da usp.
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df = pd.read_csv("usp.csv",names=

[’id’,’Name’,’Population’,’latitude’,’longitude’])

#estabelece os limites do gráfico em latitude e longitude.

BBox = ((df.longitude.min(), df.longitude.max(),

df.latitude.min(), df.latitude.max()))

df.head()

BBox

#Entrada para Manhattan

df = pd.read_csv("manhattan_centros_local.csv",

names=[’id’,’Name’,’Population’,’latitude’,’longitude’])

BBox = ((df.longitude.min(), df.longitude.max(),

df.latitude.min(), df.latitude.max()))

df.head()

BBox

#Análise dos valores obtidos no código

#Evoluç~ao varı́aveis x e y para cada ponto

x = np.array(x)

n = len(x[0][0])

fig, axs = plt.subplots(n,2,figsize=(2.5*n,2.5*n))

for i in range(n):

axs[i][0].plot(temp,x[:,0][:,i])

axs[i][0].set_xscale("log")

axs[i][0].invert_xaxis()

axs[i][1].plot(temp,x[:,1][:,i])

axs[i][1].set_xscale("log")

axs[i][1].invert_xaxis()

axs[i][0].legend([’$x_{%d}$’%(i+1)])

axs[i][1].legend([’$y_{%d}$’%(i+1)])

fig.suptitle("Evoluç~ao das variáveis ao longo da temperatura")
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# Curva do número de aceites e de avaliados

plt.figure(2)

plt.plot(temp,NE)

plt.xscale("log")

plt.gca().invert_xaxis()

plt.legend(["Numero Avaliados"])

plt.xlabel("temperatura")

plt.figure(1)

plt.plot(temp,NA)

plt.xscale("log")

plt.gca().invert_xaxis()

plt.legend(["Numero Aceites"])

plt.xlabel("temperatura")

#Curva do fator de cristalizaç~ao

xcrist=[]

ycrist=[]

x2crist=[]

y2crist=[]

for i in range(len(crist)):

xcrist.append(crist[i][0])

ycrist.append(crist[i][1])

x2crist.append(crist[i][2])

y2crist.append(crist[i][3])

plt.figure(3)

plt.plot(temp,xcrist)

plt.legend(["Cristalizaç~ao x"])

plt.gca().invert_xaxis()

plt.xscale("log")

plt.xlabel("temperatura")

plt.figure(2)

plt.plot(temp,ycrist)

plt.legend(["Cristalizaç~ao y"])

plt.gca().invert_xaxis()

plt.xscale("log")

plt.xlabel("temperatura")
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plt.figure(4)

plt.plot(temp,x2crist)

plt.legend(["Cristalizaç~ao x"])

plt.gca().invert_xaxis()

plt.xscale("log")

plt.xlabel("temperatura")

plt.figure(5)

plt.plot(temp,y2crist)

plt.legend(["Cristalizaç~ao y"])

plt.gca().invert_xaxis()

plt.xscale("log")

plt.xlabel("temperatura")

# Curva da funç~ao objetiva

f_SA = np.array(f_SA)

plt.figure()

plt.plot(temp,f_SA)

plt.legend(["Objective"])

plt.gca().invert_xaxis()

plt.xscale("log")

plt.xlabel("temperatura")

Disc=20

temp2=[]

for i in range(0,len(temp)-Disc,Disc):

temp2.append((sum(temp[i:i+Disc-1]))/len(temp[i:i+Disc-1]))

Media=[]

for i in range(0,len(f_SA)-Disc,Disc):

Media.append((sum(f_SA[i:i+Disc-1]))/len(f_SA[i:i+Disc-1]))

Media = np.array(Media)

Maxi=[]
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for i in range(0,len(f_SA)-Disc,Disc):

Maxi.append(max(f_SA[i:i+Disc-1]))

Minim=[]

for i in range(0,len(f_SA)-Disc,Disc):

Minim.append(min(f_SA[i:i+Disc-1]))

Minim = np.array(Minim)

plt.figure(3)

plt.plot(temp2,Minim)

plt.plot(temp2,Media)

plt.plot(temp2,Maxi)

plt.xscale("log")

plt.gca().invert_xaxis()

plt.legend(["Minimo", "Média", "Maximo"])

plt.xlabel("temperatura")
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APÊNDICE C – Código Particle Swarm Optimization

# Algoritmo do Particle Swarm Optimization

# funç~ao objetiva que estamos tentando minimizar.

def func1(x):

’’’

Funç~ao objetiva do algoritmo do PSO. Recebe o vetor x com as posiçoes x e y

de cada ponto que foi determinado pelo algoritmo.

Nesse caso o vetor de pontos_demanda foi estabelecido como variável global.

Ela retorna a soma que corresponde à soma do mı́nimo entre às distâncias

dos pontos do algoritmo e dos pontos de demanda.

’’’

soma = 0.0

for n in range(len(pontos_demanda)):

#para cada ponto de demanda verifca-se todos pontos criados pelo algoritmo

dist = []

for i in range(round(len(x)/2)):

x1 = x[2*i]

y1 = x[2*i+1]

dist.append(euclidean(x1,y1,pontos_demanda[n][0],pontos_demanda[n][1]))

soma+=min(dist)*pontos_demanda[n][2]

return soma

class Particle:

def __init__(self,x0):

self.position_i=[] # posiç~ao da partı́cula

self.velocity_i=[] # velocidade da partı́cula

self.pos_best_i=[] # melhor posiç~ao individual

self.err_best_i=-1 # melhor erro individual

self.err_i=-1 # erro individual

for i in range(0,num_dimensions):
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self.velocity_i.append(random.uniform(-1,1))

self.position_i.append(x0[i])

# Avalia a posiç~ao

def evaluate(self,costFunc):

self.err_i=costFunc(self.position_i)

# Verifica se a posiç~ao corrente é uma melhor posiç~ao individual

if self.err_i < self.err_best_i or self.err_best_i==-1:

self.pos_best_i=self.position_i

self.err_best_i=self.err_i

# Atualiza a velocidade da particula

def update_velocity(self,pos_best_g,w,c1,c2):

for i in range(0,num_dimensions):

r1=random.random()

r2=random.random()

vel_cognitive=c1*r1*(self.pos_best_i[i]-self.position_i[i])

vel_social=c2*r2*(pos_best_g[i]-self.position_i[i])

self.velocity_i[i]=w*self.velocity_i[i]+vel_cognitive+vel_social

# Atualiza a posiç~ao da particula de acordo com a velocidade atualizada.

def update_position(self,bounds):

for i in range(0,num_dimensions):

self.position_i[i]=self.position_i[i]+self.velocity_i[i]

if i%2 ==0:

#verifica se os novos valores de posiç~ao est~ao dentro dos limites,

sen~ao determina nova posiç~ao aleatória.

if self.position_i[i]>bounds[0][1] or

self.position_i[i] < bounds[0][0] :

self.position_i[i]=random.random()*(bounds[0][1]-bounds[0][0])

+bounds[0][0]
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else:

if self.position_i[i]>bounds[1][1] or

self.position_i[i] < bounds[1][0]:

self.position_i[i]=random.random()*(bounds[1][1]-bounds[1][0])

+bounds[1][0]

class PSO():

def __init__(self,costFunc,x0,bounds,num_particles,

maxiter,pontos_demanda,w,c1,c2):

global num_dimensions

global pos_best_g

global itera

global err_best_g

global list_err_best_g

list_err_best_g=[]

global swarm_iterations

swarm_iterations=[]

num_dimensions=len(x0)

err_best_g=-1 # melhor erro para o grupo

pos_best_g=[] # melhor posiç~ao para o grupo

# estabelece o swarm

swarm=[]

for i in range(0,num_particles):

swarm.append(Particle(x0))

# começa a optimizaç~ao do loop

i=0

l=0

stop = False

best_stop = err_best_g

while i < maxiter and stop == False:

# Percorre as particulas no swarm e avalia os pontos

for j in range(0,num_particles):

swarm[j].evaluate(costFunc)
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# Determina se a particula corrente é a melhor global.

if swarm[j].err_i < err_best_g or err_best_g == -1:

pos_best_g=list(swarm[j].position_i)

err_best_g=float(swarm[j].err_i)

itera=i

# percorre o swarm e atualiza a velocidade e posiç~ao

for j in range(0,num_particles):

swarm[j].update_velocity(pos_best_g,w,c1,c2)

swarm[j].update_position(bounds)

list_err_best_g.append(err_best_g)

list_swarm = []

for k in range(len(swarm)):

list_swarm.append(swarm[k].pos_best_i.copy())

list_swarm2 = list_swarm.copy()

swarm_iterations.append(list_swarm2)

i+=1

l+=1

if err_best_g > 1.01*best_stop or err_best_g < 0.99*best_stop:

l=0

best_stop = err_best_g

if l >=20:

stop = True

# printa o resultado final

print (’FINAL:’)

print (pos_best_g)

print (err_best_g)

if __name__ == "__PSO__":

main()

#Run
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global pontos_demanda

#Determina condiç~oes iniciais

n_estacoes = 18

num_particles=3000

maxiter=1000

vx=[]

vy=[]

for i in range(len(pontos_demanda)):

vx.append(pontos_demanda[i][0])

vy.append(pontos_demanda[i][1])

bounds=[[min(vx),max(vx)],[min(vy),max(vy)]]

pos_glob=[]

itera_g=[]

err_best_g_list=[]

swarm_iterations_g=[]

err_best=[]

w=0.1

# Constante de inercia (peso), quanto pesa a velocidade anterior

c1=2.5 # constante cognitiva

c2=3 #constante social

a=0

#inı́cio do programa.

start_time = time.time()

#caso queira fazer mais de uma vez o programa e retirar o melhor

for p in range(0,1):

a+=1

initial=[]

for i in range(0,n_estacoes):

pos_x=random.random()*(bounds[0][1]-bounds[0][0])+bounds[0][0]

pos_y=random.random()*(bounds[1][1]-bounds[1][0])+bounds[1][0]

initial.append(pos_x)

initial.append(pos_y)

PSO(func1,initial,bounds,num_particles,maxiter,pontos_demanda,w,c1,c2)

pos_glob.append(copy.copy(pos_best_g))
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itera_g.append(copy.copy(itera))

err_best_g_list.append(copy.copy(list_err_best_g))

swarm_iterations_g.append(copy.copy(swarm_iterations))

err_best.append(copy.copy(err_best_g))

tempo_PSO= (time.time() - start_time)

#Plot de resultados com os pontos de demanda, SA e PSO.

min_value = min(err_best)

min_index = err_best.index(min_value)

err1=[]

err2=[]

for i in range(round(len(pos_glob[min_index])/2)):

err1.append(-pos_glob[min_index][2*i])

err2.append(pos_glob[min_index][2*i+1])

plt.scatter(err1,err2,marker="+",s=55) #PSO

plt.scatter(best2,best[1],marker="v",s=55) #SA

pd_x=[]

pd_y=[]

for i in range(len(pontos_demanda)):

pd_x.append(-pontos_demanda[i][0])

pd_y.append(pontos_demanda[i][1])

plt.scatter(pd_x,pd_y,marker="o",s=20) #Pontos de demanda

plt.show()

#Tabela comparaç~ao dos algoritmos

from tabulate import tabulate

table = [[’Método’, ’Nº Estaç~oes’, ’Resı́duo’, ’Tempo’,’Iteraç~oes’],

[’SA’, N_stations, score,tempo_SA,len(f_SA)],

[’PSO’,n_estacoes, min_value,tempo_PSO,len(err_best_g_list[min_index])]]

print(tabulate(table))

print(’Delta Resı́duo: ’, (score-min_value))

#Funç~oes para verificaç~ao do código

#Funç~ao objetiva e evoluç~ao das variáveis dos pontos

min_value = min(err_best)

min_index = err_best.index(min_value)

f = np.array(err_best_g_list[min_index])

#f=f[:5]
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plt.figure(1)

plt.plot(f)

plt.legend(["Objective"])

plt.xlabel("iteraç~ao")

f2 = np.array(swarm_iterations_g[min_index])

posi=np.around(pos_glob[min_index],4)

f3=np.around(f2[itera_g[min_index]-1],4)

for j in range(len(f3)):

if bool(set(posi).intersection(f3[j])):

vector=j

posicao=np.zeros((len(f2[0][0]), itera_g[min_index]))

for i in range(itera_g[min_index]):

for j in range(0,len(f2[0][0])-1,2):

posicao[j][i]=(f2[i][vector][j])

posicao[j+1][i]=(f2[i][vector][j+1])

n = len(posicao)

fig, axs = plt.subplots(round(n/2),2,figsize=(2.5*n,2.5*n))

print(posicao)

for i in range(round(n/2)):

axs[i][0].plot(posicao[2*i][:])

axs[i][1].plot(posicao[2*i+1][:])

axs[i][0].legend([’$x_{%d}$’%(i+1)])

axs[i][1].legend([’$y_{%d}$’%(i+1)])

fig.suptitle("Evoluç~ao das variáveis ao longo das iteraç~oes")
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APÊNDICE D – Código Processing e auxiliares

Código utilizado no Processing e também código utilizado para preparar os dados

inseridos.

#Código Auxiliar

import numpy as np

import random

from matplotlib import pyplot as plt

import math

import csv

import pandas as pd

# Funç~oes auxiliares

def dist(a, b):

# distância entre dois pontos do tipo [xi,yi]

return ((a[0] - b[0])**2 + (a[1] - b[1])**2)**0.5

def measure(a,b): # transforma distancia de latitude/longitude para metro

lat1=a[0] #é importante quando utilizamos a vel em m/s

lat2=b[0]

lon1=a[1]

lon2=b[1]

R = 6378.137; # Raio da terra em km.

dLat = lat2 * math.pi / 180 - lat1 * math.pi / 180;

dLon = lon2 * math.pi / 180 - lon1 * math.pi / 180;

a = math.sin(dLat/2) * math.sin(dLat/2) + math.cos(lat1 * math.pi / 180) *

math.cos(lat2 * math.pi / 180) *math.sin(dLon/2) *

math.sin(dLon/2);

c = 2 * math.atan2(math.sqrt(a), math.sqrt(1-a));

d = R * c;

return d * 1000; # metros

def chooseDestination(n, num_trips, stations_s, tempo_atual,trip_queue,weights):

for i in range(num_trips):

stations2 = stations_s.copy()

choice = random.choices(range(0,len(stations2)),weights=weights,k=1)

while choice[0] == n: # n~ao pode escolher própria estaç~ao como destino
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choice = random.choices(range(0,len(stations2)),weights=weights,k=1)

vel=np.random.normal(2.46661500206781, 1.73536134461819)*60

while vel<0.005:

vel=np.random.normal(2.46661500206781, 1.73536134461819)*60

trip_queue.append([stations2[n][0],stations2[choice[0]][0],

tempo_atual,tempo_atual +

round(measure(stations2[choice[0]][0],stations2[n][0])/vel)])

# insere na fila

return trip_queue

#importar as frequencias e as estaç~oes da cidade todas as 326.

df = pd.read_csv("frequencias_manh.csv",

names=[’id’,’Saida’,’Chegada’,’latitude’,’longitude’])

freq=[]

freq=df.values.tolist()

stations3=[]

for i in range(0,len(freq)):

stations3.append([[float(freq[i][4]),float(freq[i][3])],

float(freq[i][2]),int(math.ceil(float(freq[i][1]))),

round(np.random.normal(10,3))])

stations3=np.array(stations3)

print(stations3)

#Código para gerar as filas

stations4=stations3.copy()

stations=stations4.copy()

trip_queue = [] # fila de viagens [[destino1,tempo de chegada1],

#[destino2,tempo de chegada2],...]

tempo=60*14

for i in range(tempo): # iteraç~oes - tempo rodando modelo

if i%60==0:

stations=stations3.copy()

peso = stations[:,2].copy()
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weights = stations[:,1].copy()

for n in range(len(stations)): # cada estaç~ao

choices_l=list(range(0,int(peso[n])+1))

weights_l=[1/60]*(int(peso[n])+1)

weights_l[0]=1-peso[n]/60

num_trips=random.choices(choices_l,weights_l,k=1)

if num_trips[0] > stations[n][3]:

# n~ao podem sair mais bicicletas do q tem na estaç~ao

num_trips[0] = stations[n][3]

stations[n][2] -= num_trips[0]

stations[n][3] -= num_trips[0]

#bicicletas saem da estaç~ao de origem

trip_queue=chooseDestination(n, num_trips[0], stations, i,

trip_queue,weights)

#funç~ao q escolhe destino e tempo de viagem e insere na

fila de viagens

# Visualizaç~ao simplificada

print("Minuto %d" %(i))

print(’Fila de viagens:’, trip_queue)

#Alterando o formato do vetor trip_queue

queue_stations=[]

for k in range(len(trip_queue)):

queue_stations.append(trip_queue[k][0])

queue_stations.append(trip_queue[k][1])

remove_duplicate = []

for i in queue_stations:

if i not in remove_duplicate:

remove_duplicate.append(i)
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print(len(queue_stations))

print(len(remove_duplicate))

N_bikes=[]

for i in range(len(stations3)):

for k in range(len(remove_duplicate)):

if remove_duplicate[k]==stations3[i][0]:

N_bikes.append(stations3[i][3])

print(remove_duplicate)

#retorna lista das estaç~oes para colocar no processing

print(N_bikes)

trip_queue2=[]

trip_queue2=trip_queue.copy()

for i in range(len(trip_queue2)):

trip_queue2[i][2]=float(trip_queue2[i][2])

trip_queue2[i][3]=float(trip_queue2[i][3])

for k in range(len(remove_duplicate)):

if remove_duplicate[k]==trip_queue2[i][0]:

trip_queue2[i][0]=k

elif remove_duplicate[k]==trip_queue2[i][1]:

trip_queue2[i][1]=k

print(trip_queue2)

print(len(trip_queue2))

with open(’trip_queue.csv’, ’w’) as myfile:

wr = csv.writer(myfile,quoting=csv.QUOTE_ALL)

wr.writerow(trip_queue2)

#retorna um csv com as coordenadas de inı́cio, fim,

tempo de inicio e tempo de fim em uma lista.

#Código Processing

import random

from Trip import *

import math
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def changeCoordinates(p):

# converte x

OldMin = -74.015

OldMax = -73.905

NewMin = 0.0

NewMax = 500

OldRange = (OldMax - OldMin)

NewRange = (NewMax - NewMin)

NewValuex = (((p[0] - OldMin) * NewRange) / OldRange) + NewMin

# converte y

OldMin = 40.715

OldMax = 40.885

NewMin = 900

NewMax = 0.0

OldRange = (OldMax - OldMin)

NewRange = (NewMax - NewMin)

NewValuey = (((p[1] - OldMin) * NewRange) / OldRange) + NewMin

return [NewValuex,NewValuey]

class Trip:

def __init__(self, position =0, origin = 0, destination = 0,

startTime = 0, totalTime = 0):

self.origin = origin

self.destination = destination

position2=[]

for i in range(len(stations[position])):

position2.append(stations[position][i])

#arrayCopy(stations[position],position2)

self.position=position2

self.startTime = startTime*60

self.totalTime= totalTime*60

def update(self):

if frameCount> self.startTime:

self.position[0] += (stations[self.destination][0] -

stations[self.origin][0])/
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(self.totalTime-self.startTime)

self.position[1] += (stations[self.destination][1] -

stations[self.origin][1])/

(self.totalTime-self.startTime)

def drawBike(self,i):

if frameCount > self.startTime:

if frameCount < self.totalTime:

#text(i,self.position[0], self.position[1])

circle(self.position[0], self.position[1], 7)

elif frameCount == self.totalTime:

N_bikes[(self.destination)]+=1

elif frameCount == self.startTime:

N_bikes[(self.origin)]-=1

#inputs

stations = [[-73.9678664378652, 40.75829727], [-73.95274565689759, 40.8030079]]

N_bikes=[37, 31, 20, 14]

trips_csv=[[[-74,40.7],[-73.98,40.68],0,20],

[[-73.95,40.76],[-73.96,40.65],30,50]]

#exemplos de valores

for i in range(len(stations)):

stations[i] = changeCoordinates(stations[i])

trips = []

for i in range(len(trips_csv)):

position1 = trips_csv[i][0]

origin1 = position1

destination1 = trips_csv[i][1]

startTime1 = trips_csv[i][2]

endTime1 = trips_csv[i][3]

print([position1,origin1,destination1,startTime1, endTime1])

trips.append(Trip(position1,origin1,destination1,startTime1, endTime1))

print(trips)

def setup():

#size(313, 777)

size(500,900)

frameRate(60)
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#noStroke()

def draw():

background(0,0,0)

img = loadImage("map (10).png")

img.resize(500,900);

image(img,0,0)

global stations

global trips

global N_bikes

textSize(35)

fill(0, 0, 0)

text(’Minutos:’,40, 150)

text(frameCount/60,185, 150)

text(’:’,225, 150)

text(frameCount%60,235, 150)

# draw stations

for i in range(len(stations)):

fill(255, 0, 0)

circle(stations[i][0], stations[i][1],10)

textSize(18)

fill(0, 0, 0)

text(N_bikes[i],stations[i][0]-19, stations[i][1]-5)

#text(i,stations[i][0]+5, stations[i][1]+5)

fill(255, 0, 0)

for i in range(len(trips)):

trips[i].update()

trips[i].drawBike(i)
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